Python 魔法方法
基础:
如果你想… | 所以,你写… | Python调用… |
---|
初始化一个实例 | x = MyClass() | x.__init__() |
作为一个字符串的”官方”表示 | repr(x) | x.__repr__() |
作为一个字符串 | str(x) | x.__str__() |
作为字节数组 | bytes(x) | x.__bytes__() |
作为格式化字符串 | format(x, format_spec) | x.__format__(format_spec) |
- __init__()
方法在创建实例后调用.如果你想控制创建过程,请使用__new__()
方法
- 按照惯例, __repr__()
应该返回一个有效的Python表达式的字符串
- __str__()
方法也被称为你的print(x)
迭代相关
如果你想… | 所以,你写… | Python调用… |
---|
遍历一个序列 | iter(seq) | seq.__iter__() |
从迭代器中获取下一个值 | next(seq) | seq.__next__() |
以相反的顺序创建一个迭代器 | reversed(seq) | seq.__reversed__() |
- __iter__()
无论何时创建新的迭代器,都会调用该方法.
- __next__()
每当你从迭代器中检索一下个值的时候,都会调用该方法
- __reversed__()
方法并不常见.它需要一个现有序列并返回一个迭代器,该序列是倒序的顺序.
属性
如果你想… | 所以,你写… | Python调用… |
---|
得到一个属性 | x.my_property | x.__getattribute__('my_property') |
获得一个属性 | x.my_property | x.__getattr__('my_property') |
设置一个属性 | x.my_property = value | x.__setattr__('my_property', value) |
阐述一个属性 | del x.my_property | x.__delattr__('my_property') |
列出所有属性和方法 | dir(x) | x.__dir__() |
- 如果你的类定义了一个
__getattribute__()
方法,Python将在每次引用任何属性或方法名时调用它. - 如果你的类定义了一个
__getattr__()
方法,Python只会在所有普通地方查找属性后调用它.如果一个实例x
定义了一个属性 color
, x.color
将不会调用x.__getattr__('color')
; 它将简单地返回已经定义的x.color
值. __setattr__()
只要你为属性指定值,就会调用该方法.__delattr__()
只要删除属性,就会调用该方法.__dir__()
如果您定义一个__getattr__()
或者 __getattribute__()
方法,该方法很有用.通常情况下,调用dir(x)
只会列出常规属性和方法.
__getattr__()
和__getattribute__()
方法之间的区别很微妙但很重要.
函数类
通过定义call()方法,您可以创建一个可调用类的实例 - 就像函数可调用一样.
如果你想… | 所以,你写… | Python调用… |
---|
来”调用”像函数一样的实例 | my_instance() | my_instance.__call__() |
行为
如果你的类作为一组值的容器 - 也就是说,如果问你的类是否”包含”一个值是有意义的 - 那么它应该定义下面的特殊方法,使它像一个集合一样.
如果你想… | 所以,你写… | Python调用… |
---|
序列的数量 | len(s) | s.__len__() |
否包含特定的值 | x in s | s.__contains__(s) |
字典(映射)
如果你想… | 所以,你写… | Python调用… |
---|
通过它的key来获得值 | x[key] | x.__getitem__(key) |
通过它的key来设置一个值 | x[key] = value | x.__setitem__(key, value) |
删除键值对 | del x[key] | x.__delitem__(key) |
为丢失的key提供默认值 | x[nonexistent_key] | x.__missing__(nonexistent_key) |
数字
如果你想… | 所以,你写… | Python调用… |
---|
加 | x + y | x.__add__(y) |
减 | x - y | x.__sub__(y) |
乘 | x * y | x.__mul__(y) |
整除 | x / y | x.__trueiv__(y) |
除 | x // y | x.__floordiv__(v) |
取余 | x % y | x.__mod__(y) |
整除与取余 | divmod(x, y) | x.__divmod__(y) |
平方 | x ** y | x.__pow__(y) |
左移 | x << y | x.__lshift__(y) |
友移 | x >> y | x.__rshift__(y) |
按位and运算 | x & y | x.__and__(y) |
按位xor或运算 | x ^ y | x.__xor__(y) |
按位or运算 | `x | y` |
上述一组特殊方法采用第一种方法:给定x / y
,它们提供了一种方法让x
说”我知道如何用y
整除自己”.以下一组特殊方法解决了第二种方法:它们为y提供了一种方法来说”我知道如何成为分母,并将自己整除x”.
如果你想… | 所以,你写… | Python调用… |
---|
加 | x + y | x.__radd__(y) |
减 | x - y | x.__rsub__(y) |
乘 | x * y | x.__rmul__(y) |
整除 | x / y | x.__rtrueiv__(y) |
除 | x // y | x.__rfloordiv__(v) |
取余 | x % y | x.__rmod__(y) |
整除与取余 | divmod(x, y) | x.__rdivmod__(y) |
平方 | x ** y | x.__rpow__(y) |
左移 | x << y | x.__rlshift__(y) |
友移 | x >> y | x.__rrshift__(y) |
按位and运算 | x & y | x.__rand__(y) |
按位xor或运算 | x ^ y | x.__rxor__(y) |
按位or运算 | `x | y` |
可是等等!还有更多!如果你正在进行”就地”操作,如x /= 3
则可以定义更多特殊的方法.
如果你想… | 所以,你写… | Python调用… |
---|
加 | x + y | x.__iadd__(y) |
减 | x - y | x.__isub__(y) |
乘 | x * y | x.__imul__(y) |
整除 | x / y | x.__itrueiv__(y) |
除 | x // y | x.__ifloordiv__(v) |
取余 | x % y | x.__imod__(y) |
整除与取余 | divmod(x, y) | x.__idivmod__(y) |
平方 | x ** y | x.__ipow__(y) |
左移 | x << y | x.__ilshift__(y) |
友移 | x >> y | x.__irshift__(y) |
按位and运算 | x & y | x.__iand__(y) |
按位xor或运算 | x ^ y | x.__ixor__(y) |
按位or运算 | `x | y` |
还有一些”单个数”数学运算可以让你自己对类似数字的对象进行数学运算.
如果你想… | 所以,你写… | Python调用… |
---|
负数 | -x | x.__neg__() |
正数 | +x | x.__pos__() |
绝对值 | abs(x) | x.__abs__() |
逆 | ~x | x.__invert__() |
复数 | complex(x) | x.__complex__() |
整数 | int(x) | x.__int__() |
浮点数 | float(x) | x.__float__() |
四舍五入到最近的整数 | round(x) | x.__round__() |
四舍五入到最近的n位数 | round(x, n) | x.__round__(n) |
最小整数 | math.ceil(x) | x.__ceil__() |
最大整数 | math.floor(x) | x.__floor__() |
截断x到0的最接近的整数 | math.trunc(x) | x.__trunc__() |
数字作为列表索引 | a_list[x] | a_list[x.__index__()] |
比较
如果你想… | 所以,你写… | Python调用… |
---|
等于 | x == y | x.__eq__(y) |
不等于 | x != y | x.__ne__(y) |
小于 | x < y | x.__lt__(y) |
小于等于 | x <= y | x.__le__(y) |
大于 | x > y | x.__gt__(y) |
大于等于 | x >= y | x.__ge__(y) |
布尔 | if x: | x.__bool__() |
序列化
如果你想… | 所以,你写… | Python调用… |
---|
对象副本 | copy.copy(x) | x.__copy__() |
深拷贝 | copy.deepcopy(x) | x.__deepcopy__() |
序列化一个对象 | pickle.dump(x, file) | x.__getstate__() |
序列化一个对象 | pickle.dump(x, file) | x.__reduce__() |
序列化一个对象 | pickle.dump(x, file, protocol_version) | x.__reduce_ex__(protocol_version) |
取出恢复后的状态 | x = pickle.load(fp) | x.__getnewargs__() |
取出恢复后的状态 | x = pickle.load(fp) | x.__setstate__() |
with 语句
with块限定了运行时上下文;在执行with语句时,”进入”上下文,并在执行块中的最后一个语句后”退出”上下文.
如果你想… | 所以,你写… | Python调用… |
---|
进入with语句块 | with x: | x.__enter__() |
退出with语句块 | with x: | x.__exit__(exc_type, exc_value, traceback) |
真正深奥的东西
如果你想… | 所以,你写… | Python调用… |
---|
| x = MyClass() | x.__new__() |
| del x | x.__del__() |
| “ | x.__solts__() |
| hash(x) | x.__hash__() |
| x.color | type(x).__dict__['color'].__get__(x, type(x)) |
| x.color = 'PapayaWhip' | type(x).__dict__['color'].__set__(x, 'PapayaWhip') |
| del x.color | type(x).__dict__['color'].__del__(x) |
| isinstance(x, MyClass) | MyClass.__instancecheck__(x) |
| isinstance(C, MyClass) | MyClass.__subclasscheck__(C) |
| isinstance(C, MyABC) | MyABC.__subclasshook__(C) |
Python正确调用__del__()
特殊方法时非常复杂.为了完全理解它,你需要知道Python如何跟踪内存中的对象.这里有一篇关于Python垃圾收集和类析构函数的好文章.你还应该阅读关于弱引用,weakref模块,以及可能的gc模块以获得更好的度量.