AutoDL使用教程:1)创建实例 2)配置环境+上传数据 3)PyCharm2021.3专业版下载安装与远程连接完整步骤 4)实时查看tensorboard曲线情况

写在前面

  1. 一定要先进行学生认证,这样就能1.88/h(我之前忘了进行学生认证,然后就一直是1.98/h,陆续用了300元之后才发现没有认证。这么算下来,多花了30多块钱!/(ㄒoㄒ)/~~)
  2. 上传数据有两种方式:1.直接在网盘中上传 2.通过Xftp上传。详见二(2)中有两种上传方式步骤。我建议如果上传的只是单个文件,就直接用网盘上传(zip压缩包上传,然后再用unzip解压)。如果是多个文件,就通过Xtfp上传下载比较方便。

重要的参考链接:

一、创建实例

  1. 首先进入AutoDL官网:AutoDL-品质GPU租用平台-租GPU就上AutoDL
  2. 进行学生注册登录(可以领10元的代金券)
  3. 点击右上角的控制台,然后如图点击租用新实例在这里插入图片描述
  4. 租用新实例的参数选择,选好了之后点击右下角的立即创建即可

在这里插入图片描述

在这里插入图片描述

❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀
其实可以先在基础镜像中看一下是否有自己需要的配置(假如你需要如下图所示的torch1.10-cuda113),有的话,就不需要像我这样上图这样去选择然后再去自己配置环境。

并且!如果你选择使用基础镜像,那么在等会儿的二(3)配置环境中,除了5~10步不用进行之外,其它的还都要进行,特别是步骤11去验证一下是否能顺利加载成功PyTorch。你的基础镜像环境名叫base,所以每次你需要直接用基础镜像运行代码时,还是需要调用命令conda activate base来激活进入到你的基础镜像中。

如果进入到基础镜像,发现不太好使用,那么你仍然可以继续我的步骤,去下载好镜像然后再上传,再配置虚拟环境。

在这里插入图片描述

❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀

  1. 租用成功之后的界面

在这里插入图片描述

  1. 更新内容:初始化网盘(即可以开始使用该区域的公用数据文件夹autodl-nas在这里插入图片描述

  2. 更新内容:AutoDL最近更新很快哇!多了一个可以存放数据的地方autodl-fs,看它的描述,是跟autodl-nas一样的用法,貌似性能还好一点。那么以后就可以将数据、代码存放在这两个公用的地方了!妙哉~(即,如果autodl-nas文件夹免费的20G用完了,就可以初始化autodl-fs文件夹,继续在这里面存放文件)

在这里插入图片描述

在这里插入图片描述


二、配置环境+上传数据流程

写在前面:当只是需要上传一个zip压缩包时,或者其他类型的单个文件时,建议直接进入到我的网盘中上传。因为这样可以少了连接到Xftp这个步骤,以及可以少费点钱。网盘上传步骤可参考👉AutoDL上传数据详细步骤(自己用的步骤,可能没有其他大佬用的那么高级)

(1)先下载好镜像,然后通过Xftp软件上传

(2)上传数据到AutoDL自带的网盘中

先说明好处和注意事项:

  • 好处:就算是释放了实例,这些代码以及运行数据还是会存放在网盘中(也就是比较安心嘛,而且用自带的AutoDL网盘也比较方便。实例会30天之后自动释放的,但是网盘存放的数据也会在90天后释放)
  • 注意事项:创建实例是在哪个区,就使用哪个区的网盘!避免跨区无法使用一些数据(在这个界面能够看到你的数据,可以下载or删除)

在这里插入图片描述

在这里插入图片描述

1. 直接上传(每次只能上传单个文件,建议上传zip压缩包)

只上传一个zip压缩包,以及在AutoDL中解压的方式,可参考博客:AutoDL上传数据详细步骤(自己用的步骤,可能没有其他大佬用的那么高级)


2. 借助Xftp软件(不限制上传的文件个数,可直接上传文件夹)

1. 安装Xftp

Xftp的作用:在Windows系统下,如果想和Linux系统进行文件传输,可以使用Xftp工具。

2. 借助Xftp与AutoDL网盘连接,开始上传or下载数据
2.1 上传or下载数据

注意

  1. 上传or下载数据时,请开启无卡模式开机,为了省钱!!!

  2. 上传or下载数据的简单方式:直接在Xftp中拖动文件

    • 左边的拖动到右边:本地->AudoDL(上传)
    • 右边的拖动到左边:AutoDL->本地(下载)

2.2 Xtfp与AutoDL连接

(1)点击无卡模式开机(不一定要是无卡模式哈,只要开机就行)

在这里插入图片描述

(2)开机后就获得了:登陆指令、密码

在这里插入图片描述

(3)打开Xftp进行连接

在这里插入图片描述

假设步骤(2)得到的登陆指令是:ssh -p 12300 root@rxxxxn-0.autodl.com

那么下图中的主机端口号分别是:

  • 用户名:root
  • 主机HOST:rxxxxn-0.autodl.com @后的所有内容)
  • 端口号:12300
  • 密码(最后一行):是步骤(2)直接得到的

新建会话:

在这里插入图片描述
打开已有会话

在这里插入图片描述

与AutoDL的连接成功界面

在这里插入图片描述

上传镜像到网盘中

在这里插入图片描述

(3)配置环境

  1. 点击进入JupyterLab

在这里插入图片描述

  1. 进入终端

在这里插入图片描述

  1. 编辑文件+刷新,使得能使用conda,以进行后续的环境配置
  • 输入:vim ~/.bashrc
  • 开始进行编辑:输入i
  • 移动到文件的最后一行,加上source /root/miniconda3/etc/profile.d/conda.sh
  • 保存并退出:按Esc键,输入:wq,再回车
  • 输入bash重启终端(即,刷新一下)

在这里插入图片描述

  1. 进入环境:conda activate base
  2. 创建新环境:conda create -n py38 python=3.8
  3. 进入新环境,输入:conda activate py38
  4. 安装torch(注意一定要和自己创建实例的环境相对应)(默认是挨着顺序进行下来的哈,已经完成了【二(1)下载镜像】的部分,以下3个镜像都在autodl-nas/目录下)
    输入命令:pip install autodl-nas/torch-1.10.0+cu111-cp38-cp38-linux_x86_64.whl
    (静等几分钟,不要着急,它只是卡住了~)

在这里插入图片描述

  1. 安装torchvision (按下Tab键可自动补齐名称)
    输入命令:pip install autodl-nas/torchvision-0.11.0+cu111-cp38-cp38-linux_x86_64.whl

在这里插入图片描述

  1. 安装torchaudio
    输入命令:pip install autodl-nas/torchaudio-0.10.0+cu111-cp38-cp38-linux_x86_64.whl

在这里插入图片描述

  1. jupyter页面更新(即在jupyter页面里增加一个基础环境:py38
    • py38环境中输入conda install ipykernel
    • 再输入:ipython kernel install --user --name=py38

在这里插入图片描述

  1. 按照配置好环境后,可以点击Notebook下的py38进去写代码了(即在py38环境下,使用jupyternotebook)(如果没有像我这样自己上传镜像然后配置的同学,就不用选择py38了,就选择左边的Python 38进入到jupyter后进行下面步骤即可)

注意:到目前为止,为了省钱还是开的无卡模式,所以为了验证环境已经配置完善,需要先关机,再直接开机(不要再选择无卡模式了,此时就是要开始烧钱了,1.88/h

输入以下代码验证:

import torchvision
import torch
print(torchvision.__version__)
print(torch.cuda.is_available())
# 0.11.0+cu111
# True

在这里插入图片描述

三、远程连接到本地(PyCharm2021.3专业版)

参考以下文档肯定可以开始进行远程开发的,再多注意以下图中的地方即可:

在这里插入图片描述

  1. 先用PyCharm专业版随便打开一个项目

  2. Tools -> Deployment -> Configuration
    在这里插入图片描述

  3. 添加SFTP
    在这里插入图片描述

  4. 点击...进入SSH Configurations
    在这里插入图片描述

  5. 完成配置
    在这里插入图片描述

  6. 显示云服务器的文件目录
    在这里插入图片描述

  7. 切换到root/autodl-nas云盘目录下,就能看到我们上传的数据和代码了
    在这里插入图片描述
    在这里插入图片描述

  8. 连接到远程终端
    在这里插入图片描述

  9. 查看代码内容,并重新上传更新代码
    在这里插入图片描述
    在这里插入图片描述

  10. 运行代码
    在这里插入图片描述

四、AutoDL实时查看tensorboard曲线情况

要在Autodl中安装PyTorch,你可以按照以下步骤进行操作。 首先,安装torchvision。你可以使用pip命令来安装,如下所示: ``` pip install autodl-nas/torchvision-0.11.0 cu111-cp38-cp38-linux_x86_64.whl ``` 这个命令将安装指定的版本的torchvision。 接下来,安装PyTorch。你可以使用conda命令来安装,具体命令如下: ``` conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch ``` 这个命令将安装指定版本的PyTorch以及相应的torchvision和torchaudio包。 请注意,根据你的需求和系统环境,你可以选择不同的版本进行安装。以上提供的是一些可能的安装命令示例。确保根据你的具体要求进行选择。 希望这对你有所帮助!如果你还有其他问题,请随时提问。<em>1</em><em>2</em><em>3</em> #### 引用[.reference_title] - *1* [AutoDL使用教程1创建实例 2配置环境+上传数据 3PyCharm2021.3专业版下载安装远程连接完整步骤 4...](https://blog.csdn.net/LWD19981223/article/details/127085811)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}} ] [.reference_item] - *2* [AutoDL服务器配置PyTorch](https://blog.csdn.net/wsla1234567890/article/details/128328172)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}} ] [.reference_item] - *3* [【深度学习Pycharm连接远程服务器(AutoDL)训练YOLOv5](https://blog.csdn.net/weixin_43799388/article/details/124759054)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}} ] [.reference_item] [ .reference_list ]
评论 261
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟孟单单

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值