说实话这是我第一次用单调栈,也算是第一次了解单调栈。还真的是如果没做这道题我直到NOIP也不会了解这种数据结构。
题意
简而言之就是求01矩形内的最大矩形面积。
解法
先用dp求出h[i][j] 意为从(i,j)点向上有多少个连续的1(也可看作矩形的高)
接着用两个单调栈维护每一行,一个是从左往右扫递增,一个是从右往左扫递增(也就是从左往右扫递减)。
以ris[ ](左往右扫递增的栈)举例,点(i,j)在单调栈里的前一个点就是在它右边刚好比它小的第一个点,设这个点为(i,j1) 那么j-j1+1就是以i行为底h[i][j]为高矩形向右的最长宽度。
dwn[i][j]同理
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int N=1005;
typedef pair<int,int> pii;
int n,m,a[N][N],h[N][N],top,len[N][N];
pii ris[N],dwn[N];
int main()
{
freopen("question.in","r",stdin);
freopen("question.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&a[i][j]);
if(a[i][j]) h[i][j]=h[i-1][j]+1;
}
for(int i=1;i<=n;i++){
top=0;
ris[0]=make_pair(0,0);
for(int j=1;j<=m;j++){
if(!top||ris[top].first<h[i][j]) {
ris[++top]=make_pair(h[i][j],j);
len[i][j]=1;
}
else {
while(ris[top].first>=h[i][j]&&top) top--;
len[i][j]=j-ris[top].second;
ris[++top]=make_pair(h[i][j],j);
}
}
top=0;
for(int j=m;j>=1;j--){
if(!top||dwn[top].first<h[i][j]) dwn[++top]=make_pair(h[i][j],j);
else{
while(dwn[top].first>=h[i][j]&&top) top--;
if(top) len[i][j]+=dwn[top].second-j-1;
else len[i][j]+=m-j;
dwn[++top]=make_pair(h[i][j],j);
}
}
}
int ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
ans=max(ans,len[i][j]*h[i][j]);
printf("%d",ans);
return 0;
}