noip模拟10.24

这次考试的每道题小结大致分为两部分:一部分是怎么在原有的思维基础上得到更多分,另一部分是怎么想到正解。

T1

小结
有关得分

期望得分:这道题显而易见暴力55是可以拿稳的。接着又写了15分的特殊性质。
实际得分:暴力60+特殊性质10分。
整体来讲这道题的拿分是没有问题的,但还是有需要改进的地方那就是时间。
暴力很快就可以打出来,但是特殊性质的分在写第二题时对拍几次发现错误又调,浪费了挺多时间,最重要的是打断了第二题的进程。还是在于没有想好就写【当时是抱着一种这几分不拿也罢的心态写的,但是对拍出问题后又没办法做到忽视】

有关正解

在考试的时候稍稍想到了一点和正解类似的想法但是当时的n*m还是枚举的点,每一个矩阵的高度不确定因此这样子会MLE。听了谢大佬讲才知道是固定高度然后从左到右枚举边界。这样只用一维的数组就好了。于是时间复杂度o(m^2*n )

T2

小结
有关得分

期望得分:k=0一个点+k=1八个点共45分
实际得分:35
因为转移方程写错了,按最坏情况考虑这道题是只能拿5分的。
其实这道题还可以多得点分:
1。想清楚k=1的状态
2。 讨论k=2的状态/数据分治写贪心暴力【发现自己有个问题就是有点不敢写暴力或者骗分,觉得会花很长时间,当然这也反映出另一个问题就是时间分配不合理,前面耗费太多时间导致后面时间不够】

有关正解

贪心!!知道怎么做才觉得“啊竟然可以这样好简单好巧妙(昨天第二题也是这样)” 但是就是没有想出来。有上一点2的问题。
这里写图片描述

T3

小结
有关得分

期望得分:24(n<=16的状压)
实际得分:12(状压写丑了)
前面的时间规划不合理最后几分钟才调出来的。虽然说是比期望得分少了,但还是暗自庆幸至少得了分。

有关正解

【玄妙的正解蒟蒻至今未明】【留坑】

总结:

今天相比昨天更正常,但蒟蒻还是垫底。还有进步的空间吧【强灌鸡汤】时间规划还可以更合理思维这里就不强求了。
【虽然按照估分一等奖都拿不了呢我真的很丧】

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值