第五章 第一节 算法分析与优化(陷入不归路的调试)

陷入不归路的调试

在线性回归中,我们使用了如下的代价函数来评估预测误差:

想要降低预测误差,即提高预测精度,我们往往会采用这些手段:

手段评价
采集更多的样本我们认为见多识广会让人变得聪明,但是也会让人变得优柔寡断,或者聪明反被聪明误。
降低特征维度也许被降掉的维度会是非常有用的知识。
采集更多的特征增加了计算负担,也可能导致过拟合。
进行高次多项式回归可能造成过拟合。
调试正规化参数 λλ这个调节策略缺乏指导,只能是猜测性调节。

可以看到,这些手段不总是那么美好,而且每个手段的尝试都会花费我们大量时间去调代码,跑测试,也许还出力不讨好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值