寒假比赛第二层个人赛赛后总结

本文介绍了解决A-DifferentDivisors问题的思路,利用素数筛和线性筛寻找a的两个因子,以使因子乘积等于a且因子差值最小。通过数学分类讨论解决D问题,优先保证结果长度和元素选择。展示了如何应用Dijkstra算法解决最短路径问题。
摘要由CSDN通过智能技术生成

A - Different Divisors

思路:
1.数论简单题,用到了素数筛(或者线性筛)
2.我们观察样例,1肯定是选择的,最后一个因子肯定是a本身,然后中间两个是a的因子,我们可以发现,最好的情况这两个因子相乘等于a,这样才会使得a最小,为了保证因子之间的差值确定,那么这两个因子应该为素数
3.确定了这些,我们只需要从小到大枚举两个素数,乘积就是a
AC代码:

#include <bits/stdc++.h>
using namespace std;
#define MAX_NUM 40000
typedef long long ll;
const int maxn=40000 + 7;
int t, d, a, k, x, ans;
int isprime[MAX_NUM+10];//最终如果isprime【i】为1,则表示i是素数
void prime()
{
	for (int i = 2; i <= MAX_NUM; ++i)//开始假设所有数都是素数 
		isprime[i] = 1;
	for(int i = 2; i <= MAX_NUM; ++i){//每次将一个素数的所有倍数标记为非素数 
		if (isprime[i])//只标记素数的倍数 
			for (int j = 2 * i; j <= MAX_NUM; j += i)
				isprime[j] = 0;//将素数i的倍数标记为非素数		
	}
} 
int main(){
	prime();
	scanf("%d", &t);
	while(t--){
		scanf("%d", &d);
		x = d + 1;
		for (int i = x; i <= maxn; ++i){
			if(isprime[i] == 1){
				k = i;
				break;
			}
		}
		for (int i = k + 1; i < maxn; ++i){
			if(isprime[i] == 1 && i - k >= d){
				a = i;
				break;
			}
		}
		ans = a * k;
		printf("%d\n", ans);
	}
	return 0;
}

D - 这不是签到题

思路:数学分类讨论的思想。优先使得结果长度最大,然后优先让 a 数组每一位选1。
则 a数组的第一个数一定是1,之后每一位只要满足相加后结果不和上一位相同即可(都行则优先取1)
AC代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 0x3f3f3f3f
#define jiechufengyin std::ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
const int N = 1e5 + 7;

string b;
ll t, n, j;
ll B[N], c[N], a[N];

int main(){
	jiechufengyin;
	cin >> t;
	while(t--){
		cin >> n;
		cin >> b;
		for(int i = 0; i < n; ++i){
			B[i] = b[i] - '0';
		//	cout << B[i] << endl;
		}
		a[0] = 1;
		c[0] = B[0] + a[0];
		for(ll i = 1; i < n; ++i){
			if(B[i] == 1){
				if(c[i - 1] != 2){
					a[i] = 1;
					c[i] = 2;
				}
				else if(c[i -1] == 2){
					c[i] = 1;
					a[i] = 0;
				}	
			}
			else if(B[i] == 0){
				if(c[i - 1] != 1){
					a[i] = 1;
					c[i] = 1;
				}
				else if(c[i - 1] == 1){
					a[i] = 0;
					c[i] = 0;
				}
			}		
		}
		for(ll i = 0; i < n; ++i){
			cout << a[i];
		}
		cout << endl;
	}
	return 0;
}

H - 最少拦截系统

思路:DP(最长子序列问题)。注意细节 !!
AC代码:

#include <iostream>
using namespace std;
typedef long long ll;
#define inf 0x3f3f3f3f
#define jiechufengyin std::ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
const int N = 1e3 + 7;

int ddnum, h, ans = 0, mmin, temp;
bool flag;
int height[100000];

int main(){
	jiechufengyin;
	while(cin >> ddnum){
		ans = 0;
		while(ddnum--){
			cin >> h;
			flag = 0;
			mmin = inf;
			for(int j = 0; j < ans; ++j){
				if(h <= height[j] && mmin > height[j] - h){//不要再开一个拦截系统 
					mmin = height[j] - h;
					temp = j;
					flag = 1;
				}
			}
			if(flag == 0){
				height[ans] = h;
				ans++;
			}
			else height[temp] = h;
		}
		cout << ans << endl;
	}
	return 0;
}

I - How Many Tables

简单并查集
AC代码:

#include <iostream>
#include <string>
#include <string.h>
using namespace std;
const int N = 1e3 + 7;

int t, n, m, f[N], a, b;

void init(int x){
	for (int i = 1; i <= x; ++i){
		f[i] = i;
	}
	return ;
}

int findfather(int v){
	if(f[v] == v) return v;
	else{
		f[v] = findfather(f[v]);
		return f[v];
	}
}

void merge(int v, int u){
	int t1, t2;
	t1 = findfather(v);
	t2 = findfather(u);
	if(t1 != t2){
		f[t2] = t1;
	}
	return ;
}

int main(){
	cin >> t;
	while(t--){
		int sum = 0;
		cin >> n >> m;
		memset(f, 0, sizeof f);
		init(n);
		for (int i = 1; i <= m; ++i){
			cin >> a >> b;
			merge(a, b);
		}
		for (int i = 1; i <= n; ++i){
			if(f[i] == i) sum++;
		}
		cout << sum << endl;
	}
	return 0;
}

K - 最短路径问题(Dijkstra)

Dijkstra模板,只是要统计时间和路程两个东西。但是输入的时候要特别注意,首先题目并没有说有重边,但是不判断重边会WA,还有就是先要保证在最短路经的情况下心求花费,而不是两个孤立的求,所以输入的时候要特别注意。
知识点:
1.fill()函数
头文件:algorithm
函数声明:fill(数组名,数组名 + n,值) ,值为任意值
作用:按单元填充,可以填充一个区间内所有的值
用法代码举例:

#include<iostream>
#include<algorithm>
using namespace std;
int a[5] = {1, 2, 3, 4, 5};
void print()
{
	for(int i = 0; i < 5; i++)
		cout << a[i] << " ";
	cout << endl; 
}

int main()
{
	cout << "原数组:" << endl; 
	print();
	
	cout << "赋值为任意值的数组:" << endl;
	fill(a, a + 5, 100);
	print();
	
	fill(a, a + 5, -1);
	print();
	
	return 0;
}

使用fill初始化二维数组:
法一:

fill(dis[0], dis[0]+maxn*maxn, INF);

法二:

	for (int i = 1; i <= n; ++i){
		fill(money[i], money[i] + n + 1, inf);
		fill(mmap[i], mmap[i] + n + 1, inf);
	}

2.Dijkstra算法(单源最短路)
具体知识点参考:https://blog.csdn.net/LXC_007/article/details/113390965
AC代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 1e3 + 7;
#define inf 0x3f3f3f3f
typedef long long ll;

ll mmap[N][N], book[N], dis[N], money[N][N]; 
ll n, m;

//初始化 
void init(){
	for (ll i = 1; i <= n; ++i){
		fill(money[i], money[i] + n + 1, inf);
		fill(mmap[i], mmap[i] + n + 1, inf);
	}
	fill(dis, dis + n + 1, inf);
	fill(book, book + n + 1, inf);
}

void Dijkstra(int s){
	queue<int> q;
	dis[s] = 0;
	book[s] = 0;
	q.push(s);
	while(!q.empty()){
		int u = q.front();
		q.pop();
		for (ll i = 1; i <= n; ++i){
			if(dis[i] > mmap[u][i] + dis[u]){
				dis[i] = mmap[u][i] + dis[u];
				book[i] = money[u][i] + book[u];
				q.push(i);
			}
			else if(dis[i] == mmap[u][i] + dis[u]){
				book[i] = min(book[i], money[u][i] + book[u]);
			}
		}
	}
}

int main(){
	std::ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	while(cin >> n >> m){
		if(n == 0 && m == 0) break;
		init();
		for (ll i = 1; i <= m; ++i){
			ll a, b, c, d;
			cin >> a >> b >> c >> d;
			if(c < mmap[a][b]){
				mmap[a][b] = mmap[b][a] = c;
				money[a][b] = money[b][a] = d;
			}
			else if(c == mmap[a][b]){
				if(d < money[a][b]) money[a][b] = money[b][a] = d;
			}
		}
		int st, ed;
		cin >> st >> ed;
		Dijkstra(st);
		cout << dis[ed] << ' ' << book[ed] << endl;
	}
	return 0;
} 

注意:用cin,cout会被卡时间必须要解除封印或者用scanf和printf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值