输入点集合进行抽稀,根据不同的抽稀力度获取不同的点集结果,力度越大,点集越稀疏。
package com.hxkj.common.utils;
import java.util.*;
/**
* 坐标处理类 GPS点的抽稀-道格拉斯算法
*
* @author Elinx
* @since 2021-05-31 10:28
*/
public class GisDouglasUtil {
/**
* 计算两点距离
*
* @param point1 点1
* @param point2 点2
* @return double
*/
private static double calculationDistance(double[] point1, double[] point2) {
double lat1 = point1[0];
double lat2 = point2[0];
double lng1 = point1[1];
double lng2 = point2[1];
double radLat1 = lat1 * Math.PI / 180.0;
double radLat2 = lat2 * Math.PI / 180.0;
double a = radLat1 - radLat2;
double b = (lng1 * Math.PI / 180.0) - (lng2 * Math.PI / 180.0);
double s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a / 2), 2)
+ Math.cos(radLat1) * Math.cos(radLat2) * Math.pow(Math.sin(b / 2), 2)));
return s * 6370996.81;
}
/**
* 计算点pX到点pA和pB所确定的直线的距离
*
* @param start 开始
* @param end 结束
* @param center 中心
* @return double
*/
private static double distToSegment(double[] start, double[] end, double[] center) {
double a = Math.abs(calculationDistance(start, end));
double b = Math.abs(calculationDistance(start, center));
double c = Math.abs(calculationDistance(end, center));
double p = (a + b + c) / 2.0;
double s = Math.sqrt(Math.abs(p * (p - a) * (p - b) * (p - c)));
return s * 2.0 / a;
}
/**
* 递归方式压缩轨迹
*
* @param coordinate 坐标集
* @param result 结果集
* @param start 开始
* @param end 结束
* @param dMax 抽稀力度
* @return List<double [ ]>
*/
private static List<double[]> compressLine(List<double[]> coordinate, List<double[]> result, int start, int end, int dMax) {
if (start < end) {
double maxDist = 0;
int currentIndex = 0;
double[] startPoint = coordinate.get(start);
double[] endPoint = coordinate.get(end);
for (int i = start + 1; i < end; i++) {
double currentDist = distToSegment(startPoint, endPoint, coordinate.get(i));
if (currentDist > maxDist) {
maxDist = currentDist;
currentIndex = i;
}
}
if (maxDist >= dMax) {
//将当前点加入到过滤数组中
result.add(coordinate.get(currentIndex));
//将原来的线段以当前点为中心拆成两段,分别进行递归处理
compressLine(coordinate, result, start, currentIndex, dMax);
compressLine(coordinate, result, currentIndex, end, dMax);
}
}
return result;
}
/**
* @param coordinate 原始轨迹Array<{longitude, latitude}>
* @param dMax 允许最大距离误差
* @return douglasResult 抽稀后的轨迹
*/
public static List<double[]> douglasPeucker(List<double[]> coordinate, int dMax) {
//抽稀点数量需要大于2
if (coordinate == null || coordinate.size() <= 2) {
return null;
}
List<double[]> coordinate2 = new ArrayList<>();
for (int i = 0; i < coordinate.size(); i++) {
double[] point = Arrays.copyOf(coordinate.get(i), 3);
point[2] = i;
coordinate2.add(point);
}
List<double[]> result = new ArrayList<>();
result = compressLine(coordinate2, result, 0, coordinate2.size() - 1, dMax);
result.add(coordinate2.get(0));
result.add(coordinate2.get(coordinate.size() - 1));
Collections.sort(result, new Comparator<double[]>() {
@Override
public int compare(double[] u1, double[] u2) {
if (u1[2] > u2[2]) {
return 1;
} else if (u1[2] < u2[2]) {
return -1;
}
return 0; //相等为0
}
});
return result;
}
}
用法:
List list = new ArrayList<>(); // 点集对象列表
List<double[]> runtimeTrackList = new ArrayList<>();
for (Object trackObj : list) {
// new track 仅包含x,y,自行设定解析类
Double longitude = track.getX();
Double latitude = track.getY();
if (latitude != null && longitude != null) {
double[] temp = new double[2];
Arrays.fill(temp, longitude);
Arrays.fill(temp, latitude);
runtimeTrackList.add(temp);
}
}
// 抽稀算法,力度3
runtimeTrackList = GisDouglasUtil.douglasPeucker(runtimeTrackList, 3);