排序时间空间复杂度表
\ | 平均时间复杂度 | 最坏时间复杂度 | 最好时间复杂度 | 空间复杂度 | 稳定性 |
---|---|---|---|---|---|
直接插入排序 | O(n^2) | O(n^2) | O(n) | O(1) | 稳定 |
希尔排序 | O(nlogn) | O(nlogn) | O(n^1.3) | O(1) | 不稳定 |
冒泡排序 | O(n^2) | O(n^2) | O(n) | O(1) | 稳定 |
快速排序 | O(nlogn) | O(n^2) | O(nlogn) | O(nlogn) | 不稳定 |
直接选择排序 | O(n^2) | O(n^2) | O(n^2) | O(1) | 不稳定 |
堆排序 | O(nlogn) | O(nlogn) | O(nlogn) | O(1) | 不稳定 |
归并排序 | O(nlogn) | O(nlogn) | O(nlogn) | O(n) | 稳定 |
一、直接插入排序
- 思路:
当插入第 i (i>=1) 个元素时,前面的 array[0] , array[1] , … , array[i-1] 已经排好序,此时用array[i] 的排序码与 array[i-1] , array[i-2] , … 的排序码顺序进行比较,找到插入位置即将 array[i] 插入,原来位置上的元素顺序后移 - 图解:
- 代码:
public static void insertSort(int[] array){
int temp = 0;
for (int i = 1; i < array.length; i++) {
temp = array[i];
int j = 0;
for (j = i-1; j >= 0 ; j--) {
if (array[j] > temp){
array[j + 1] = array[j];
}
else {
break;
}
}
array[j + 1] = temp;
}
}
- 直接插入排序的特性总结:
- 元素集合越接近有序,直接插入排序算法的时间效率越高
- 时间复杂度:O(N^2)
- 空间复杂度:O(1),它是一种稳定的排序算法
- 稳定性:稳定
二、希尔排序
-
思路:
先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达=1时,所有记录在统一组内排好序。 -
图解:
-
代码:
public static void shell(int[] array,int gap) {
int j = 0;
int temp = 0;
for (int i = gap; i < array.length ; i+=gap) {
temp= array[i];
for (j = i - gap; j >= 0; j -= gap) {
if (array[j] > temp) {
array[j + gap] = array[j];
} else {
break;
}
}
array[j + gap] = temp;
}
}
public static void shellSort(int[] array) {
int[] arr = {5, 3, 1};
for (int i = 0; i < arr.length; i++) {
shell(array, arr[i]);
}
}
- 希尔排序是对直接插入排序的优化。
- 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。
- 希尔排序的时间复杂度不好计算,需要进行推导,推导出来平均时间复杂度 O(N1.3—N2)
- 稳定性:不稳定
三、冒泡排序
- 思路:从第一个数开始和后一个比较,如果前一个数大于后一个数,交换前后次序,重复以上操作直到有序为止(其中每一趟都可以找到当前参与交换的(n-i)个数中最大值并沉底)
- 图解:
- 代码:
public static void bubbleSort(int[] arr,int n) {
for(int i = 0 ; i < n ; i++ ) {
int tmp = arr[i];
for(int j = 1 ; j < n ; j++){
if(arr[i] > arr[j]){
arr[i] = arr[j];
arr[j] = tmp;
}
}
- 冒泡排序的特性总结:
- 冒泡排序是一种非常容易理解的排序
- 时间复杂度:O(N^2)
- 空间复杂度:O(1)
- 稳定性:稳定
四、快速排序
- 思想:
1)快排递归:先把数组组中的一个数作为基数,一般为左边第一个数,然后从两边检索,先从右边检索比基数小的,再从左边检索比基数大的,如果检索到了,就停下,然后交换这两个元素,然后再继续检索。
2)快排非递归:递归是使用编译器自动用栈来实现,容易造成栈溢出,非递归可以使用栈模拟递归过程,我们每一次从栈顶取出一部分划分之后,再把两部分的起始位置分别入栈。
3)快排优化:使用三数取中法,其中小部分排序可以考虑直接插入排序 - 代码:
1)快排递归
public int portion1(int[] arr,int left,int right){
int tmp = arr[left];
while (left < right){
while (left < right && arr[right] >= tmp){
--right;
}
arr[left] = arr[right];
while (left < right && arr[left] <= tmp){
++left;
}
arr[right] = arr[left];
}
arr[left] = tmp;
return left;
}
public void quickSort1(int[] arr,int start,int end){
int par = portion1(arr,start,end);
if(par > start + 1){
quickSort1(arr,start,par - 1);
}
if (par < end - 1){
quickSort1(arr,par + 1,end);
}
}
2)快排非递归
public static int partion(int[] array,int low,int high) {
int tmp = array[low];
while (low < high) {
while (low < high && array[high] >= tmp) {
--high;
}
if (low >= high) {
break;
} else {
array[low] = array[high];
}
while (low < high && array[low] <= tmp){
++low;
}
if (low >= high){
break;
}else {
array[high] = array[low];
}
}
array[low] = tmp;
return low;
}
public static void quickSort(int[] array) {
int[] stack = new int[array.length * 2];
int top = 0;
int low = 0;
int high = array.length - 1;
//先进行一趟快排
int par = partion(array, low, high);
//1、判断当前par两边是否有两个数据以上
if (par > low + 1) {
stack[top++] = low;
stack[top++] = par - 1;
}
if (par < high - 1) {
stack[top++] = par + 1;
stack[top++] = high;
}
//此时两边数已经全部入栈
//判断栈是否为空,不为空,取出栈顶两个数
//进行partion();
while (top > 0) {
high = stack[--top];
low = stack[--top];
par = partion(array, low, high);
if (par > low + 1) {
stack[top++] = low;
stack[top++] = par - 1;
}
if (par < high - 1) {
stack[top++] = par + 1;
stack[top++] = high;
}
}
}
3)快排优化:
public static void medianOfThree(int[] array,int low,int high){
int mid = (low + high) >>> 1;
//使满足 array[mid] <= array[low] <= array[high]
if (array[mid] > array[low]){
swap(array,mid,low);
}
if(array[mid] > array[high]){
swap(array,mid,high);
}
if (array[low] > array[high]){
swap(array,low,high);
}
}
public static void quick(int[] array,int start,int end){
if(end-start+1 <= 16){
insertSort(array);
return;
}
medianOfThree(array,start,end);
int par = partion(array,start,end);
//左边是否有两个数据以上
if (par > start + 1){
quick(array,start,par - 1);
}
//右边是否有两个数据以上
if (par < end -1){
quick(array,par + 1,end);
}
}
五、直接选择排序
- 思想:每次扫描剩余待排序数组中的最小的放到排好序的序列中,直到最后一个数为止。
- 图解:
- 代码:
public static void choiceSort(int[] arr){
if (arr == null || arr.length < 1){
return;
}
int min = 0;
int tmp;
//初始化当前最小的
for (int i = 0; i < arr.length - 1; i++) {
min = i;
for (int j = i + 1; j < arr.length ; j++) {
if (arr[min] > arr[j]){
//记住最小元素下标
min = j;
}
}
if (min != i){
tmp = arr[i];
arr[i] = arr[min];
arr[min] = tmp;
}
}
}
六、堆排序
-
思想:排升序建大堆,排降序建小堆
-
代码:
public static void adjust( int[] array,int start,int end ){
int temp = array[start];
for (int i = 2*start+1 ; i <= end ; i = i*2+1) {
if ((i < end) && array[i] < array[i+1]){
i++;
}
if (array[i] > temp){
array[start] = array[i];
start = i;
} else {
break;
}
array[start] = temp;
}
}
public static void heapSort( int[] array ){
for (int i = (array.length - 1 - 1 )/2 ; i >= 0 ; i--)
adjust(array,i,array.length-1);//log2n
} 把这颗树一次调整为大根堆的时间复杂度是多少?n*log2n //交换
for (int j = 0; j < array.length; j++) {
int tmp = array[array.length - 1 - j];
array[array.length - 1 - j] = array[0];
array[0] = tmp;
//不需要调整有序的数据
adjust(array,0,array.length - 1 - j - 1);
}
}
七、归并排序
-
思想:
即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 -
代码:
public static void merge(int[] array,int start,int mid,int end){
int[] tmpArray = new int[array.length];
int tmpIndex = start;
int start2 = mid + 1;
int i = start;
while (start <= mid && start2 <= end){
if (array[start] < array[start2]){
tmpArray [tmpIndex++] = array[start++];
}
else {
tmpArray [tmpIndex++] = array[start2++];
}
}
//循环可能退出的情况
//1
while (start <= mid){
tmpArray [tmpIndex++] = array[start++];
}
//2
while (start2 <= end){
tmpArray [tmpIndex++] = array[start2++];
}
//从 tmpArray 拷到 array
while (i <= end){
array[i] = tmpArray[i];
i++;
}
}
public static void mergeSout(int[] array,int start,int end){
if (start >= end){
return;
}
int mid = (start + end) / 2;
mergeSout(array,start,mid);
mergeSout(array,mid + 1,end);//分解
//肯定是一个一个有序的序列
//合并
merge(array,start,mid,end);
}