ElasticSearch7.7.1安装分词器——ik分词器和hanlp分词器

背 景

  之所以选择用ES,自然是看重了她的倒排所以,倒排索引又必然关联到分词的逻辑,此处就以中文分词为例以下说到的分词指的就是中文分词,ES本身默认的分词是将每个汉字逐个分开,具体如下,自然是很弱的,无法满足业务需求,那么就需要把那些优秀的分词器融入到ES中来,业界比较好的中文分词器排名如下,hanlp> ansj >结巴>ik>smart chinese analysis
   博主这里就选两种比较常用的讲解hanlpikhanlp在业界名声最响,ik是官方推荐和ES版本同步更新的使用最多的分词器,并且举例比较下他们的功能;

断句对比效果

  默认的分词器效果;

GET /_analyze
{
   "text": "林俊杰在上海市开演唱会啦"
}

# 结果
{
 "tokens" : [
   {
     "token" : "林",
     "start_offset" : 0,
     "end_offset" : 1,
     "type" : "<IDEOGRAPHIC>",
     "position" : 0
   },
   {
     "token" : "俊",
     "start_offset" : 1,
     "end_offset" : 2,
     "type" : "<IDEOGRAPHIC>",
     "position" : 1
   },
   {
     "token" : "杰",
     "start_offset" : 2,
     "end_offset" : 3,
     "type" : "<IDEOGRAPHIC>",
     "position" : 2
   },
   {
     "token" : "在",
     "start_offset" : 3,
     "end_offset" : 4,
     "type" : "<IDEOGRAPHIC>",
     "position" : 3
   },
   {
     "token" : "上",
     "start_offset" : 4,
     "end_offset" : 5,
     "type" : "<IDEOGRAPHIC>",
     "position" : 4
   },
   {
     "token" : "海",
     "start_offset" : 5,
     "end_offset" : 6,
     "type" : "<IDEOGRAPHIC>",
     "position" : 5
   },
   {
     "token" : "市",
     "start_offset" : 6,
     "end_offset" : 7,
     "type" : "<IDEOGRAPHIC>",
     "position" : 6
   },
   {
     "token" : "开",
     "start_offset" : 7,
     "end_offset" : 8,
     "type" : "<IDEOGRAPHIC>",
     "position" : 7
   },
   {
     "token" : "演",
     "start_offset" : 8,
     "end_offset" : 9,
     "type" : "<IDEOGRAPHIC>",
     "position" : 8
   },
   {
     "token" : "唱",
     "start_offset" : 9,
     "end_offset" : 10,
     "type" : "<IDEOGRAPHIC>",
     "position" : 9
   },
   {
     "token" : "会",
     "start_offset" : 10,
     "end_offset" : 11,
     "type" : "<IDEOGRAPHIC>",
     "position" : 10
   },
   {
     "token" : "啦",
     "start_offset" : 11,
     "end_offset" : 12,
     "type" : "<IDEOGRAPHIC>",
     "position" : 11
   }
 ]
}

  ik分词器效果,这里以ik_smart为例;

GET /_analyze
{
  "text": "林俊杰在上海市开演唱会啦",
  "analyzer": "ik_smart"
}

# 结果
{
"tokens" : [
  {
    "token" : "林俊杰",
    "start_offset" : 0,
    "end_offset" : 3,
    "type" : "CN_WORD",
    "position" : 0
  },
  {
    "token" : "在上",
    "start_offset" : 3,
    "end_offset" : 5,
    "type" : "CN_WORD",
    "position" : 1
  },
  {
    "token" : "海市",
    "start_offset" : 5,
    "end_offset" : 7,
    "type" : "CN_WORD",
    "position" : 2
  },
  {
    "token" : "开",
    "start_offset" : 7,
    "end_offset" : 8,
    "type" : "CN_CHAR",
    "position" : 3
  },
  {
    "token" : "演唱会",
    "start_offset" : 8,
    "end_offset" : 11,
    "type" : "CN_WORD",
    "position" : 4
  },
  {
    "token" : "啦",
    "start_offset" : 11,
    "end_offset" : 12,
    "type" : "CN_CHAR",
    "position" : 5
  }
]
}


  hanlp分词器效果,这里以hanlp默认分词器为例;

GET /_analyze
{
  "text": "林俊杰在上海市开演唱会啦",
  "analyzer": "hanlp"
}


# 结果如下
{
"tokens" : [
  {
    "token" : "林俊杰",
    "start_offset" : 0,
    "end_offset" : 3,
    "type" : "nr",
    "position" : 0
  },
  {
    "token" : "在",
    "start_offset" : 3,
    "end_offset" : 4,
    "type" : "p",
    "position" : 1
  },
  {
    "token" : "上海市",
    "start_offset" : 4,
    "end_offset" : 7,
    "type" : "ns",
    "position" : 2
  },
  {
    "token" : "开",
    "start_offset" : 7,
    "end_offset" : 8,
    "type" : "v",
    "position" : 3
  },
  {
    "token" : "演唱会",
    "start_offset" : 8,
    "end_offset" : 11,
    "type" : "n",
    "position" : 4
  },
  {
    "token" : "啦",
    "start_offset" : 11,
    "end_offset" : 12,
    "type" : "y",
    "position" : 5
  }
]
}

  断句层面,hanlp还是要强于ik的;

ik安装

  1. 官网找到和ES版本的elasticsearch-analysis-ik-7.7.1.zip,下载安装zip包,如图1;

   官网地址
在这里插入图片描述

图1 官网下载elasticsearch-analysis-ik-7.7.1.zip
  1. 将下载的elasticsearch-analysis-ik-7.7.1.zip上传到elasticsearch 的安装目录下的plugins下,如我的是/usr/local/tools/elasticsearch/elasticsearch-7.7.1/plugins,当然,你集群要是网速不错,也可以在家此文件夹下直接下载,省去上传的工作;
cd /usr/local/tools/elasticsearch/elasticsearch-7.7.1/plugins
#直接下载指令
wget https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.7.1/elasticsearch-analysis-ik-7.7.1.zip
  1. 解压/usr/local/tools/elasticsearch/elasticsearch-7.7.1/plugins``下的elasticsearch-analysis-ik-7.7.1.zip`包,指令如下;

#因为是zip,如果报错unzip不是内部指令。说明没安装unzip需要先安装,如果已安装,直接跳过这里
yum install zip 
yum install unzip

#新建id文件夹
mkdir ik

#将zip包移入刚刚新建ik文件夹呢
mv ./elasticsearch-analysis-ik-7.7.1.zip ik/

#进入ik文件夹
cd ik

#解压
unzip elasticsearch-analysis-ik-7.7.1.zip

#解压后确保里面的问价如下
total 5828
-rwxr-xr-x 1 hadoop supergroup  263965 Aug  5 18:57 commons-codec-1.9.jar
-rwxr-xr-x 1 hadoop supergroup   61829 Aug  5 18:57 commons-logging-1.2.jar
drwxrwxrwx 2 hadoop supergroup     299 Aug  5 18:57 config
-rwxr-xr-x 1 hadoop supergroup   54599 Aug  5 18:57 elasticsearch-analysis-ik-7.7.1.jar
-rwxr-xr-x 1 hadoop supergroup 4504441 Aug  5 18:57 elasticsearch-analysis-ik-7.7.1.zip
-rwxr-xr-x 1 hadoop supergroup  736658 Aug  5 18:57 httpclient-4.5.2.jar
-rwxr-xr-x 1 hadoop supergroup  326724 Aug  5 18:57 httpcore-4.4.4.jar
-rwxr-xr-x 1 hadoop supergroup    1805 Aug  5 18:57 plugin-descriptor.properties
-rwxr-xr-x 1 hadoop supergroup     125 Aug  5 18:57 plugin-security.policy


#赋权
chmod -R 777 ./*

#切换到es的安装目录
cd /usr/local/tools/elasticsearch/elasticsearch-7.7.1/

#查看是否安装完成
bin/elasticsearch-plugin list
#返回结果
future versions of Elasticsearch will require Java 11; your Java version from [/usr/local/tools/java/jdk1.8.0_211/jre] does not meet this requirement
ik



  1. 重启es,让分词器生效,操作shell如下;
# 利用jps查看elasticsearch的守护进程
jps
#结果
2497 Kafka
2609 QuorumPeerMain
23906 Elasticsearch
32282 NodeManager
2428 Jps
7341 Worker
2126 CoarseGrainedExecutorBackend

#杀死elasticsearch的守护进程
kill -9 23906 

#重启启动es
bin/elasticsearch -d

  1. 确保整个es集群上的每台机器都操作了以上步骤后,就可以在kibana上测试了,kibana RESTFul风格的测试语句如下;
  GET /_analyze
{
    "text": "林俊杰在上海市开演唱会啦",
    "analyzer": "ik_smart"
}

# 结果
{
  "tokens" : [
    {
      "token" : "林俊杰",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "在上",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "海市",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "开",
      "start_offset" : 7,
      "end_offset" : 8,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "演唱会",
      "start_offset" : 8,
      "end_offset" : 11,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "啦",
      "start_offset" : 11,
      "end_offset" : 12,
      "type" : "CN_CHAR",
      "position" : 5
    }
  ]
}

  更多的ik分词器结合es的使用,请查考ik的官网readme教程:传送门

hanlp安装

  hanlp在es的使用有很多人在做,版本相对比较乱,博主也是找了好几个版本,终于选了一个博主用的来的,hanlp的安装稍微会比ik繁琐一丢丢,所以大家也稍微耐心点;

  hanlp并没有做到和ES版本的同步更新,所以遇到较新的版本,则需要自己编译源码打包!比如我们的ElasticSearch7.7.1就是目前(20201225)没有release版本!而且hanlp分词器不能直接找hanlp包,用不了,而是要找和elasticsearch兼容的elasticsearch-analysis-hanlp

  1. 进入其中一个elasticsearch-analysis-hanlp派系的官网,如图2:传送门
    在这里插入图片描述
图2 elasticsearch-analysis-hanlp某一派系官网
  1. 利用git,在文件夹内git clone https://github.com/AnyListen/elasticsearch-analysis-hanlp.git,再利用java的开发工具IDEA或者eclipse打开项目,打开 pom.xml 文件,修改 <elasticsearch.version>7.0.0</elasticsearch.version> 为需要的 ES 版本;

  2. 这个git项目的老哥太大意了,留了个bug,如下图3d的文件内缺少两个参数name,你把它补全加上,不然编译报错,然后使用 mvn package 生产打包文件,最终文件在 target/release 文件夹下,打包完成后,使用离线方式安装即可。
    .在这里插入图片描述

图3 重新编译hanlp源码
  1. 在es的插件目录下/usr/local/tools/elasticsearch/elasticsearch-7.7.1/plugins新建`hanlp1文件夹,开始离线安装,代码如下;
#进入es插件目录
cd /usr/local/tools/elasticsearch/elasticsearch-7.7.1/plugins

#新建hanlp文件夹并进入
mkdir hanlp
chmod 755 hanlp
cd hanlp

#将之前重新编译打包好的 target/release下的elasticsearch-analysis-hanlp-7.7.1.zip上传到新建的hanlp目录下解压
unzip elasticsearch-analysis-hanlp-7.7.1.zip

#解压后目录如下
-rwxr-xr-x 1 hadoop supergroup   33498 Dec 24 15:24 elasticsearch-analysis-hanlp-7.7.1.jar
-rw-r--r-- 1 hadoop supergroup 7747506 Dec 24 15:24 elasticsearch-analysis-hanlp-7.7.1.zip
-rwxr-xr-x 1 hadoop supergroup 7971652 Dec 24 15:24 hanlp-portable-1.7.3.jar
-rwxr-xr-x 1 hadoop supergroup    2493 Dec 24 15:24 hanlp.properties
-rwxr-xr-x 1 hadoop supergroup    1117 Dec 24 15:24 plugin-descriptor.properties
-rwxr-xr-x 1 hadoop supergroup      88 Dec 24 15:24 plugin.properties
-rwxr-xr-x 1 hadoop supergroup     414 Dec 24 15:24 plugin-security.policy

#赋权
chmod -R 755 ./*

#利用vi修改hanlp.properties里面的root=的值,为es的hanlp插件安装目录,如下
root=/usr/local/tools/elasticsearch/elasticsearch-7.7.1/plugins/hanlp/
#wq!保存hanlp.properties的内容

#汇到es的安装目录查看hanlp分词器是否成功
cd /usr/local/tools/elasticsearch/elasticsearch-7.7.1/
bin/elasticsearch-plugin list
#返回结果
future versions of Elasticsearch will require Java 11; your Java version from [/usr/local/tools/java/jdk1.8.0_211/jre] does not meet this requirement
hanlp
ik



  1. 重启es,让分词器生效,操作shell如下;
# 利用jps查看elasticsearch的守护进程
jps
#结果
2497 Kafka
2609 QuorumPeerMain
24812 Elasticsearch
32282 NodeManager
2428 Jps
7341 Worker
2126 CoarseGrainedExecutorBackend

#杀死elasticsearch的守护进程
kill -9 24812 

#重启启动es
bin/elasticsearch -d

  1. 确保整个es集群上的每台机器都操作了以上步骤后,就可以在kibana上测试了,kibana RESTFul风格的测试语句如下;
GET /_analyze
{
  "text": "林俊杰在上海市开演唱会啦",
  "analyzer": "hanlp"
}


# 结果如下
{
"tokens" : [
  {
    "token" : "林俊杰",
    "start_offset" : 0,
    "end_offset" : 3,
    "type" : "nr",
    "position" : 0
  },
  {
    "token" : "在",
    "start_offset" : 3,
    "end_offset" : 4,
    "type" : "p",
    "position" : 1
  },
  {
    "token" : "上海市",
    "start_offset" : 4,
    "end_offset" : 7,
    "type" : "ns",
    "position" : 2
  },
  {
    "token" : "开",
    "start_offset" : 7,
    "end_offset" : 8,
    "type" : "v",
    "position" : 3
  },
  {
    "token" : "演唱会",
    "start_offset" : 8,
    "end_offset" : 11,
    "type" : "n",
    "position" : 4
  },
  {
    "token" : "啦",
    "start_offset" : 11,
    "end_offset" : 12,
    "type" : "y",
    "position" : 5
  }
]
}


 &emsp;&emsp;<font face='times new roman' color=blue>**更多的hanlp分词器结合es的使用,请查考hanlp某一派系的的官网readme教程:[传送门](https://github.com/anylisten/elasticsearch-analysis-hanlp)**
## ==<font color='blue' face='楷体'>专有名词对比效果</font>==
 &emsp;&emsp;<font face='times new roman'>默认的分词器效果;
 ```json
GET /_analyze
{
    "text": "中国移动"
}

#结果
{
  "tokens" : [
    {
      "token" : "中",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "<IDEOGRAPHIC>",
      "position" : 0
    },
    {
      "token" : "国",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "<IDEOGRAPHIC>",
      "position" : 1
    },
    {
      "token" : "移",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "<IDEOGRAPHIC>",
      "position" : 2
    },
    {
      "token" : "动",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "<IDEOGRAPHIC>",
      "position" : 3
    }
  ]
}


  ik分词器效果,这里以ik_smart为例;

GET /_analyze
{
  "text": "中国移动",
  "analyzer": "ik_smart"
}

#结果
{
"tokens" : [
  {
    "token" : "中国移动",
    "start_offset" : 0,
    "end_offset" : 4,
    "type" : "CN_WORD",
    "position" : 0
  }
]
}



  hanlp分词器效果,这里以hanlp默认分词器为例;

GET /_analyze
{
  "text": "中国移动",
  "analyzer": "hanlp"
}


#结果如下
{
"tokens" : [
  {
    "token" : "中国",
    "start_offset" : 0,
    "end_offset" : 2,
    "type" : "ns",
    "position" : 0
  },
  {
    "token" : "移动",
    "start_offset" : 2,
    "end_offset" : 4,
    "type" : "vn",
    "position" : 1
  }
]
}


  专有名词上,hanlp和ik的各有特殊,读者也可自己多测试几轮,而且ik和hanlp自带网页版的在线分词器,只需要百度搜索ik活hanlp在线分词即可使用;

维护自己的词典

  当然不论采用哪种分词器,都不能一劳永逸解决所有的分词匹配需求,特别是针对某些特有的分词需求,如当搜索自家公司或者自家公司产品时,期望他得分靠前,这个时候就需要维护自己的词典,ik和hanlp都支持维护自己的词典,即当你规定某个词为一体时,该词不会再做细分;具体操作可以查看各自官网的readme文件有说明。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

╭⌒若隐_RowYet——大数据

谢谢小哥哥,小姐姐的巨款

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值