文章目录
1. 系统概述与架构设计
1.1 项目背景
随着智慧城市建设的不断推进,车牌识别技术在智能交通、停车管理、安防监控等领域发挥着越来越重要的作用。传统的车牌识别系统往往依赖于CPU处理,在面对高并发视频流时存在性能瓶颈。NVIDIA DeepStream框架基于GStreamer多媒体框架,充分利用GPU加速能力,为实时视频分析提供了高性能解决方案。
本教程将详细介绍如何基于DeepStream 6.1.1构建一个完整的车牌检测识别系统,涵盖从模型训练、转换到实际部署的全链路技术实现。系统支持多种输入源(本地视频文件、RTSP流、USB摄像头等),并通过RTSP服务对外提供标准化的视频流服务。
1.2 系统架构设计
整个系统采用模块化设计思路,主要包含以下核心组件:
数据输入模块:负责从不同数据源获取视频流,支持本地文件、网络流、摄像头等多种输入方式。通过uridecodebin组件实现统一的数据接入,自动处理不同视频格式的解码工作。
流处理模块:基于nvstreammux组件实现多路视频流的复用和批处理,将多个视频帧打包成batch以提高GPU利用率。支持动态调整batch size和超时参数以适应不同性能需求。
订阅专栏 解锁全文
5325

被折叠的 条评论
为什么被折叠?



