2020-09-05

曲率求解

Let α : I → R 3 \alpha:I \rightarrow R^3 α:IR3 be a regular parametrized curve(not necessarily by arc length) and let β : J → R 3 \beta:J\rightarrow R^3 β:JR3 be a reparametrization of α ( I ) \alpha(I) α(I) by the arc length s = s ( t ) s=s(t) s=s(t),mearusred from t 0 ∈ I t_0 \in I t0I(see Remark 2).Let t = t ( s ) t=t(s) t=t(s) be the inverse function of s s s and set d α d t = α ′ \dfrac{d\alpha}{dt}=\alpha' dtdα=α, d 2 α d t 2 = α ′ ′ \dfrac{d^2\alpha}{dt^2}=\alpha'' dt2d2α=α,etc.Prove that
a. d t d s = 1 ∣ α ′ ∣ \dfrac{dt}{ds}=\dfrac{1}{|\alpha'|} dsdt=α1, d 2 t d s 2 = − α ′ ⋅ α ′ ′ ∣ a ′ ∣ 4 \dfrac{d^2t}{ds^2}=-\dfrac{\alpha'\cdot \alpha''}{|a'|^4} ds2d2t=a4αα
b. The curvature of α \alpha α at t ∈ I t \in I tI is
k ( t ) = ∣ α ′ ∧ α ′ ′ ∣ ∣ α ′ ∣ 3 k(t)=\dfrac{|\alpha'\land\alpha''|}{|\alpha'|^3} k(t)=α3αα
该题是曲线和曲面的微分几何的习题。对于理解曲线的曲率和挠率非常重要,因此将证明过程记录如下:
答:
a) 因为 s ( t ( s ) ) = s , d s d t = ∣ α ′ ∣ s(t(s))=s,\dfrac{ds}{dt}=|\alpha'| s(t(s))=s,dtds=α,对两边s求导有:
d s d t d t d s = 1 \dfrac{ds}{dt}\dfrac{dt}{ds}=1 dtdsdsdt=1
所以 d t d s = 1 ∣ α ′ ∣ \dfrac{dt}{ds}=\dfrac{1}{|\alpha'|} dsdt=α1
d 2 t d s 2 = d 1 ∣ α ′ ∣ d s = d 1 ∣ α ′ ∣ d t d t d s = − 1 ∣ α ′ ∣ 2 d ∣ α ′ ∣ d t 1 ∣ α ′ ∣ \dfrac{d^2t}{ds^2}=\dfrac{d\dfrac{1}{|\alpha'|}}{ds}=\dfrac{d\dfrac{1}{|\alpha'|}}{dt}\dfrac{dt}{ds}=-\dfrac{1}{|\alpha'|^2}\dfrac{d|\alpha'|}{dt}\dfrac{1}{|\alpha'|} ds2d2t=dsdα1=dtdα1dsdt=α21dtdαα1
又因为
d ∣ α ′ ∣ d t = d ( ∂ α x ∂ t ) 2 + ( ∂ α y ∂ t ) 2 + ( ∂ α z ∂ t ) 2 d t \dfrac{d|\alpha'|}{dt}=\dfrac{d\sqrt{(\dfrac{\partial \alpha_x}{\partial t})^2+(\dfrac{\partial \alpha_y}{\partial t})^2+(\dfrac{\partial \alpha_z}{\partial t})^2}}{dt} dtdα=dtd(tαx)2+(tαy)2+(tαz)2 ,最终求导可以得到 d ∣ α ′ ∣ d t = 1 2 ∣ α ′ ∣ ( 2 ∂ α x ∂ t ∂ 2 α x ∂ t 2 + 2 ∂ α y ∂ t ∂ 2 α y ∂ t 2 + 2 ∂ α z ∂ t ∂ 2 α z ∂ t 2 ) = ( α ′ ⋅ α ′ ′ ) ∣ α ′ ∣ \dfrac{d|\alpha'|}{dt}=\dfrac{1}{2|\alpha'|}(2\dfrac{\partial \alpha_x}{\partial t}\dfrac{\partial^2 \alpha_x}{\partial t^2}+2\dfrac{\partial \alpha_y}{\partial t}\dfrac{\partial^2 \alpha_y}{\partial t^2}+2\dfrac{\partial \alpha_z}{\partial t}\dfrac{\partial^2 \alpha_z}{\partial t^2})=\dfrac{(\alpha' \cdot\alpha'')}{|\alpha'|} dtdα=2α1(2tαxt22αx+2tαyt22αy+2tαzt22αz)=α(αα)
所以 d 2 t d s 2 = − α ′ ⋅ α ′ ′ ∣ α ′ ∣ 4 \dfrac{d^2t}{ds^2}=-\dfrac{\alpha'\cdot\alpha''}{|\alpha'|^4} ds2d2t=α4αα
b)
因为 β \beta β α \alpha α的重参数化,并且 β \beta β是以arc length s为参数的参数化曲线。所以 α \alpha α t ∈ I t \in I tI处的曲率 k ( t ) k(t) k(t) β \beta β s ∈ J s \in J sJ处的曲率相等。除此之外,根据 β \beta β的定义,有 β = α ∘ t \beta=\alpha \circ t β=αt,即 β \beta β α \alpha α t t t的复合函数。
因此有:
k ( t ) = ∣ d 2 β d s 2 ∣ k(t)=|\dfrac{d^2\beta}{ds^2}| k(t)=ds2d2β

d β d s = d α ∘ t d s = d α d t d t d s = α ′ 1 ∣ α ′ ∣ \dfrac{d\beta}{ds}=\dfrac{d\alpha \circ t}{ds}=\dfrac{d\alpha}{dt}\dfrac{dt}{ds}=\alpha'\dfrac{1}{|\alpha'|} dsdβ=dsdαt=dtdαdsdt=αα1

所以, d 2 β d s 2 = d α ′ ∣ α ′ ∣ d s = d α ′ ∣ α ′ ∣ d t d t d s = d α ′ ∣ α ′ ∣ − α ′ d ∣ α ′ ∣ ∣ α ′ ∣ 2 d s d t = α ′ ′ ∣ α ′ ∣ − α ′ d ∣ α ′ ∣ ∣ α ′ ∣ 2 d s d t \dfrac{d^2\beta}{ds^2}=\dfrac{d\dfrac{\alpha'}{|\alpha'|}}{ds}=\dfrac{d\dfrac{\alpha'}{|\alpha'|}}{dt}\dfrac{dt}{ds}=\dfrac{d\alpha'|\alpha'|-\alpha'd|\alpha'|}{|\alpha'|^2}\dfrac{ds}{dt}=\dfrac{\alpha''|\alpha'|-\alpha'd|\alpha'|}{|\alpha'|^2}\dfrac{ds}{dt} ds2d2β=dsdαα=dtdααdsdt=α2dαααdαdtds=α2αααdαdtds

而由之前计算得到的
d ∣ α ′ ∣ d t = ( α ′ ⋅ α ′ ′ ) ∣ α ′ ∣ \dfrac{d|\alpha'|}{dt}=\dfrac{(\alpha' \cdot\alpha'')}{|\alpha'|} dtdα=α(αα)
可得 d 2 β d s 2 = α ′ ′ ∣ α ′ ∣ − α ′ α ′ ⋅ α ′ ′ ∣ α ′ ∣ ∣ α ′ ∣ 3 \dfrac{d^2\beta}{ds^2}=\dfrac{\alpha''|\alpha'|-\alpha'\dfrac{\alpha'\cdot\alpha''}{|\alpha'|}}{|\alpha'|^3} ds2d2β=α3αααααα
所以
k ( t ) = ∣ α ′ ′ ∣ α ′ ∣ − α ′ α ′ ⋅ α ′ ′ ∣ α ′ ∣ ∣ α ′ ∣ 3 ∣ k(t)=|\dfrac{\alpha''|\alpha'|-\alpha'\dfrac{\alpha'\cdot\alpha''}{|\alpha'|}}{|\alpha'|^3}| k(t)=α3αααααα
所以
k ( t ) 2 = ∣ α ′ ′ ∣ α ′ ∣ − α ′ α ′ ⋅ α ′ ′ ∣ α ′ ∣ ∣ α ′ ∣ 3 ∣ 2 k(t)^2=|\dfrac{\alpha''|\alpha'|-\alpha'\dfrac{\alpha'\cdot\alpha''}{|\alpha'|}}{|\alpha'|^3}|^2 k(t)2=α3αααααα2
而根据
∣ x ⃗ − y ⃗ ∣ 2 = ∣ x ⃗ ∣ 2 − 2 x ⃗ y ⃗ + ∣ y ⃗ ∣ 2 |\vec x -\vec{y}|^2=|\vec x|^2-2\vec x\vec y+|\vec y|^2 x y 2=x 22x y +y 2
可得

k ( t ) 2 = 1 ∣ α ′ ∣ 6 ( ∣ α ′ ∣ 2 ∣ a ′ ′ ∣ 2 − 2 ∣ α ′ ∣ α ′ ⋅ α ′ ′ ∣ α ′ ∣ ( α ′ ⋅ α ′ ′ ) + ( α ′ ⋅ α ′ ′ ∣ α ′ ∣ ) 2 ∣ α ′ ∣ 2 ) = 1 ∣ α ′ ∣ 6 ( ∣ α ′ ∣ 2 ∣ α ′ ′ ∣ 2 − α ′ ⋅ α ′ ′ ) k(t)^2=\dfrac{1}{|\alpha'|^6}(|\alpha'|^2|a''|^2-2|\alpha'|\dfrac{\alpha'\cdot\alpha''}{|\alpha'|}(\alpha'\cdot\alpha'')+(\dfrac{\alpha'\cdot\alpha''}{|\alpha'|})^2|\alpha'|^2)=\dfrac{1}{|\alpha'|^6}(|\alpha'|^2|\alpha''|^2-\alpha'\cdot\alpha'') k(t)2=α61(α2a22αααα(αα)+(ααα)2α2)=α61(α2α2αα)
而根据叉乘公式
∣ u ∧ v ∣ 2 = ∣ u ∣ 2 ∣ v ∣ 2 ( 1 − c o s 2 θ ) = ∣ u ∣ 2 ∣ v ∣ 2 ( 1 − ( u ⋅ v ∣ u ∣ ∣ v ∣ ) 2 ) = ∣ u ∣ 2 ∣ v ∣ 2 − ( u ⋅ v ) 2 |u\land v|^2=|u|^2|v|^2(1-cos^2\theta)=|u|^2|v|^2(1-(\dfrac{u\cdot v}{|u||v|})^2)=|u|^2|v|^2-(u\cdot v)^2 uv2=u2v2(1cos2θ)=u2v2(1(uvuv)2)=u2v2(uv)2
可得
k 2 ( t ) = 1 ∣ α ′ ∣ 6 ∣ α ′ ∧ α ′ ′ ∣ 2 k^2(t)=\dfrac{1}{|\alpha'|^6}|\alpha' \land \alpha''|^2 k2(t)=α61αα2
所以最终得到
k ( t ) = α ′ ∧ α ′ ′ ∣ α ′ ∣ 3 k(t)=\dfrac{\alpha'\land\alpha''}{|\alpha'|^3} k(t)=α3αα

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值