【4.2 约数】

更 好 的 阅 读 体 验 \color{red}{更好的阅读体验}


概念

  • 约数,又称因数。整数 a a a除以整数 b ( b ≠ 0 ) b(b≠0) b(b=0) 除得的商正好是整数而没有余数,我们就说 a a a能被 b b b整除,或 b b b能整除 a a a a a a称为 b b b倍数 b b b称为 a a a约数

4.2.1 试除法求约数

思想

  • i = 1 i=1 i=1开始枚举到 N \sqrt{N} N
  • i i i N i \frac{N}{i} iN即为 N N N的约数

模板

const int N=1e6+3;

int res[N];  //存储约数

int cnt;  //记录数量

void get_div(int n){
    
    cnt=0;  //初始化
    
    for(int i=1;i<=n/i;i++){  //从1开始枚举
        if(n%i==0){
            res[cnt++]=i;  //将i作为约数
            if(i!=n/i) res[cnt++]=n/i;   //将n/i作为约数
        }
    }
    
    sort(res,res+cnt);  //将约数从小到大排序
    
}

例题 869. 试除法求约数

原题链接

描述

给定 n 个正整数 ai,对于每个整数 ai,请你按照从小到大的顺序输出它的所有约数。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一个整数 ai。

输出格式
输出共 n 行,其中第 i 行输出第 i 个整数 ai 的所有约数。

数据范围
1≤n≤100,
2≤ai≤2×109
输入样例:

2
6
8

输出样例:

1 2 3 6 
1 2 4 8 

代码

#include <bits/stdc++.h>
using namespace std;

const int N=1e6+3;

int res[N];

int cnt;

void get_div(int n){
    
    cnt=0;
    
    for(int i=1;i<=n/i;i++){
        
        if(n%i==0){
            
            res[cnt++]=i;
            if(i!=n/i) res[cnt++]=n/i;
            
        }
        
        
    }
    
    sort(res,res+cnt);
    
}

int main(){
    
    int n;
    
    cin>>n;
    
    while(n--){
        
        int x;
        
        cin>>x;
        
        get_div(x);
        
        for(int i=0;i<cnt;i++) cout<<res[i]<<" ";
        
        cout<<endl;
        
    }
    
    return 0;
    
}

4.2.2 约数个数

思想

  • 算术基本定理:任何一个大于 1 1 1的自然数 N N N,如果 N N N不为质数

  • 那么 N N N可以唯一分解成有限个质数的乘积 N = p 1 a 1 × p 2 a 2 ⋯ × p i a k N=p_1^{a_1}\times p_2^{a_2}\dots\times p_i^{a_k} N=p1a1×p2a2×piak,且最多只有一个大于 n \sqrt{n} n 的质因子

  • 这里 p 1 < p 2 < p 3 … p n p_1<p_2<p_3\dots p_n p1<p2<p3pn均为质数,其中指数 a i a_i ai是正整数

  • d d d N N N的任意一个约数, d = p 1 b 1 × p 2 b 2 ⋯ × p i b j d=p_1^{b_1}\times p_2^{b_2}\dots\times p_i^{b_j} d=p1b1×p2b2×pibj,其中 0 < b j < a k 0<b_j<a_k 0<bj<ak

  • 由算术基本定理可知对于 d d d中的 p i b j p_i^{b_j} pibj项, b j b_j bj取值不同,则 d d d不同 ( 每 个 数 的 因 式 分 解 是 唯 一 的 ) (每个数的因式分解是唯一的) ()

  • N N N的约数个数 = = = d d d的个数 = = = b j b_j bj的选法总数

{ p 1 共 有 0 ∼ a 1 种 选 法 p 2 共 有 0 ∼ a 2 种 选 法 p 3 共 有 0 ∼ a 3 种 选 法 p i 共 有 0 ∼ a k 种 选 法 \begin{cases} p_1共有0\sim a_1种选法\\ p_2共有0\sim a_2种选法\\ p_3共有0\sim a_3种选法\\ p_i共有0\sim a_k种选法\\ \end{cases} p10a1p20a2p30a3pi0ak

  • 根据乘法原理可知: N N N的约数个数为 ( a 1 + 1 ) × ( a 2 + 1 ) × ( a 3 + 1 ) × ⋯ × ( a k + 1 ) (a_1+1)\times(a_2+1)\times(a_3+1)\times\dots\times(a_k+1) (a1+1)×(a2+1)×(a3+1)××(ak+1)

模板例题 870. 约数个数

原题链接

描述

给定 n 个正整数 ai,请你输出这些数的乘积的约数个数,答案对 109+7 取模。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一个整数 ai。

输出格式
输出一个整数,表示所给正整数的乘积的约数个数,答案需对 109+7 取模。

数据范围
1≤n≤100,
1≤ai≤2×109
输入样例:

3
2
6
8

输出样例:

12

代码

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;

const LL mod=1e9+7;

LL cnt=1;

map<int,int> primes;  //存储质因子底数和其指数的映射

void get_div(int n){
    
    for(int i=2;i<=n/i;i++){  //从2开始枚举质因子
        
        if(n%i==0){  //当其为质因子时
            while(n%i==0){
                primes[i]++;  //指数增加
                n/=i;
            }
        }
        
    }
    
    if(n>1) primes[n]++;  //剩余的数大于1则为最后的质因子
    
}

int main(){
    
    int n;
    
    cin>>n;
    
    while(n--){
        
        int x;
        
        cin>>x;
        
        get_div(x);
        
    }
    
    for(auto &p : primes) cnt=cnt*(p.second+1)%mod;  //核心:N的约数个数为(a1+1)*(a2+1)*(a3+1)*…*(ai+1)
    
    cout<<cnt<<endl;
    
    return 0;
    
}

4.2.3 约数之和

思想

  • 算术基本定理:任何一个大于 1 1 1的自然数 N N N,如果 N N N不为质数

  • 那么 N N N可以唯一分解成有限个质数的乘积 N = p 1 a 1 × p 2 a 2 ⋯ × p i a k N=p_1^{a_1}\times p_2^{a_2}\dots\times p_i^{a_k} N=p1a1×p2a2×piak,且最多只有一个大于 n \sqrt{n} n 的质因子

  • 这里 p 1 < p 2 < p 3 … p i p_1<p_2<p_3\dots p_i p1<p2<p3pi均为质数,其中指数 a k a_k ak是正整数

    { p 1 的 约 数 之 和 = p 1 0 + p 1 1 + ⋯ + p 1 a 1 p 2 的 约 数 之 和 = p 2 0 + p 2 1 + ⋯ + p 2 a 2 p 3 的 约 数 之 和 = p 3 0 + p 3 1 + ⋯ + p 3 a 3                       … p i 的 约 数 之 和 = p i 0 + p i 1 + ⋯ + p i a k \begin{cases}p_1的约数之和=p_1^{0}+p_1^{1}+\dots+p_1^{a_1}\\p_2的约数之和=p_2^{0}+p_2^{1}+\dots+p_2^{a_2}\\p_3的约数之和=p_3^{0}+p_3^{1}+\dots+p_3^{a_3}\\~~~~~~~~~~~~~~~~~~~~~\dots\\ p_i的约数之和=p_i^{0}+p_i^{1}+\dots+p_i^{a_k}\\ \end{cases} p1=p10+p11++p1a1p2=p20+p21++p2a2p3=p30+p31++p3a3                     pi=pi0+pi1++piak

  • 根据乘法原理可知: N N N的约数之和 = ( p 1 0 + p 1 1 + ⋯ + p 1 a 1 ) × ( p 2 0 + p 2 1 + ⋯ + p 2 a 2 ) × ⋯ × ( p i 0 + p i 1 + ⋯ + p i a k ) =(p_1^{0}+p_1^{1}+\dots+p_1^{a_1})\times(p_2^{0}+p_2^{1}+\dots+p_2^{a_2})\times\dots\times(p_i^{0}+p_i^{1}+\dots+p_i^{a_k}) =(p10+p11++p1a1)×(p20+p21++p2a2)××(pi0+pi1++piak)


模板例题 871. 约数之和

原题链接

描述

给定 n 个正整数 ai,请你输出这些数的乘积的约数之和,答案对 109+7 取模。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一个整数 ai。

输出格式
输出一个整数,表示所给正整数的乘积的约数之和,答案需对 109+7 取模。

数据范围
1≤n≤100,
1≤ai≤2×109
输入样例:

3
2
6
8

输出样例:

252

代码

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;

const LL mod=1e9+7;

LL res=1;

map<int,int> primes;  //存储质因子底数和其指数的映射

void get_div(int n){
    
    for(int i=2;i<=n/i;i++){  //从2开始枚举质因子
        
        if(n%i==0){  //当其为质因子时
            while(n%i==0){
                primes[i]++;  //指数增加
                n/=i;
            }
        }
        
    }
    
    if(n>1) primes[n]++;  //剩余的数大于1则为最后的质因子
    
}

int main(){
    
    int n;
    
    cin>>n;
    
    while(n--){
        
        int x;
        
        cin>>x;
        
        get_div(x);
        
    }
    
    for(auto &p : primes){
        
        LL t=1;
        
        int a=p.first,b=p.second;
        
        while(b--){
            t=(t*a+1)%mod;  //核心:求出 p0一直加到p的k的次方的和
        }
        
        res=res*t%mod;
        
    }
    
    cout<<res<<endl;
    
    return 0;
    
}

4.2.4 最大公约数和最小公倍数

概念

  • 最大公约数指两个或多个整数共有约(因)数中最大的数
  • 最小公倍数指两个或多个整数的公倍数里最小的数

思想

  • 辗转相除法求最大公约数

    **例如:**假如需要求 100 和18 两个正整数的最大公约数,用欧几里得算法,是这样进行的:
    100 / 18 = 5 (余 10)
    18 / 10= 1(余8)
    10 / 8 = 1(余2)
    8 / 2 = 4 (余0)
    至此,最大公约数为2
    以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 100 和 18 的最大公约数2。

  • N N N M M M的最小公倍数 l c m ( N , M ) lcm(N,M) lcm(N,M),则先求 N N N M M M的最大公约数 g c d ( N , M ) gcd(N,M) gcd(N,M),然后 N × M g c d ( N , M ) \frac{N\times M}{gcd(N,M)} gcd(N,M)N×M则为最小公倍数。

模板

//最大公约数
int gcd(int a, int b){
    return b ? gcd(b, a % b) : a;
}

//最小公倍数
int lcm(int a,int b){
    return a/gcd(a,b)*b;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浪漫主义狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值