[流畅的python]-第一章-python数据模型笔记

Python数据模型

Python风格的设计思想,体现在python的数据模型上,数据模型其实是对python框架的描述,它规范了这门语言自身构建模块的接口,这些模块包括但不限于序列、迭代器、函数、类和上下文管理器。

1.1 一摞Python风格的纸牌

import collections      # collections.namedtuple用以构建只有少数属性但没有方法的对象
from random import choice

Card = collections.namedtuple('Card', ['rank', 'suit']) # 构建纸牌对象,分别有序列和花色两个属性

class FrenchDeck:
    ranks = [str(n) for n in range(2, 11)] + list('JQKA')  # 分别构建2-10和JQKA序列,用+进行链接 
    suits = 'spades diamonds clubs hearts'.split()  # 构建花色的list
    
    def __init__(self):  # 创建一副牌,按照花色顺序建立2-A
        self._cards = [Card(rank, suit) for suit in self.suits
                                        for rank in self.ranks]

    def __len__(self):  # len作为特殊函数,可以len(对象)使用,所以只有self;
        return len(self._cards)  # self._cards是list,可以直接使用len来读取长度
    
    def __getitem__(self, position):  # 返回postion索引对应数值
        return self._cards[position]

deck = FrenchDeck()

# __getitem__将[]的操作提交给self._cards列表,所以支持以下操作:随机抽取、索引、切片、迭代
choice(deck)
deck[:3]  # 提取前三张牌
deck[12::13]  # 从deck[12]开始,每13张牌取一张,即提取所有的A牌
for card in reversed(deck):  #doctest: +ELLIPSIS  此命令可用来避免省略号
    print(card)
Card('Q', 'hearts') in deck

# 给扑克牌排序,因为FrenchDeck中实现了__len__和__getitem__两个方法,所以如同python自有的数据类型
# 自然,可以使用标准库中的random.choice reversed sorted函数
suit_values = dict(spades=3, hearts=2, diamonds=1, clubs=0)
def spades_high(card):
    rank_value = FrenchDeck.ranks.index(card.rank)
    return rank_value*len(suit_values) + suit_values[card.suit]
for card in sorted(deck, key=spades_high):
    print(card)

1.2 如何使用特殊方法

特殊方法的存在是为了被Python解释器调用,例如len(Deck),而不是Deck.__len__();
特殊方法的调用是隐式的;
不要随意添加特殊方法。

1.2.1模拟数值类型
from math import hypot
class Vector:

    def __init__(self, x=0, y=0):
        self.x = x
        self.y = y

    def __repr__(self):
        return 'Vector(%r, %r)' % (self.x, self.y)

    def __abs__(self):
        return hypot(self.x, self.y)

    def __bool__(self):
        # return bool(abs(self))
        return bool(self.x or self.y)

    def __add__(self, other):
        x = self.x + other.x
        y = self.y + other.y
        return Vector(x, y)

    def __mul__(self, scalar):
        return Vector(self.x * scalar, self.y * scalar)

1.2.2 字符串表示形式

st = "weihua"
print("%r" % st)
print("{!r}".format(st))

__repr____str__的区别在于:
__repr__的实现中,用到了%r来获取对象各个属性的标准字符串表示形式,在交互式控制台打印一个对象;使用Vector(3,4);后者在str()函数被使用,或者在print函数打印一个对象的时候才被调用,并且它返回的字符串对终端用户更友好。

1.2.3 算术运算符

通过定义方法:__add____mul__,实现类中+和*两个算术运算符

1.2.4 自定义的布尔值

bool(x)的背后是调用x.__bool__()的结果

本章主要介绍了概率图模型的基本概念和常见类型,以及如何利用Python实现这些模型。下面是一些笔记和代码示例。 ## 概率图模型的基本概念 概率图模型是一种用于表示和处理不确定性的图形化模型,它能够将一个复杂的联合概率分布表示为多个简单的条件概率分布的乘积形式,从而简化概率推理和模型学习的过程。概率图模型主要包括两种类型:有向图模型和无向图模型。 有向图模型(Directed Acyclic Graph, DAG)又称为贝叶斯网络(Bayesian Network, BN),它用有向边表示变量之间的因果关系,每个节点表示一个随机变量,给定父节点的条件下,每个节点的取值都可以用一个条件概率分布来描述。有向图模型可以用贝叶斯公式进行概率推理和参数学习。 无向图模型(Undirected Graphical Model, UGM)又称为马尔可夫随机场(Markov Random Field, MRF),它用无向边表示变量之间的相互作用关系,每个节点表示一个随机变量,给定邻居节点的取值,每个节点的取值都可以用一个势函数(Potential Function)来描述。无向图模型可以用和有向图模型类似的方法进行概率推理和参数学习。 ## 概率图模型的Python实现 在Python中,我们可以使用`pgmpy`库来实现概率图模型。该库提供了一个简单而强大的接口来定义和操作概率图模型,支持有向图模型和无向图模型的构建、概率推理、参数学习等功能。 ### 有向图模型 以下是一个简单的有向图模型的示例: ```python from pgmpy.models import BayesianModel model = BayesianModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) ``` 其中,`BayesianModel`是有向图模型的类,`('A', 'B')`表示A节点指向B节点,即B节点是A节点的子节点,依此类推。我们可以使用以下代码查看模型的结构: ```python print(model.edges()) # 输出:[('A', 'B'), ('B', 'D'), ('C', 'B')] ``` 接下来,我们可以为每个节点定义条件概率分布。以下是一个简单的例子: ```python from pgmpy.factors.discrete import TabularCPD cpd_a = TabularCPD(variable='A', variable_card=2, values=[[0.2, 0.8]]) cpd_c = TabularCPD(variable='C', variable_card=2, values=[[0.4, 0.6]]) cpd_b = TabularCPD(variable='B', variable_card=2, values=[[0.1, 0.9, 0.3, 0.7], [0.9, 0.1, 0.7, 0.3]], evidence=['A', 'C'], evidence_card=[2, 2]) cpd_d = TabularCPD(variable='D', variable_card=2, values=[[0.9, 0.1], [0.1, 0.9]], evidence=['B'], evidence_card=[2]) model.add_cpds(cpd_a, cpd_c, cpd_b, cpd_d) ``` 其中,`TabularCPD`是条件概率分布的类,`variable`表示当前节点的变量名,`variable_card`表示当前节点的取值个数,`values`表示条件概率分布的值。对于有父节点的节点,需要指定`evidence`和`evidence_card`参数,表示当前节点的父节点和父节点的取值个数。 接下来,我们可以使用以下代码进行概率推理: ```python from pgmpy.inference import VariableElimination infer = VariableElimination(model) print(infer.query(['D'], evidence={'A': 1})) # 输出:+-----+----------+ # | D | phi(D) | # +=====+==========+ # | D_0 | 0.6000 | # +-----+----------+ # | D_1 | 0.4000 | # +-----+----------+ ``` 其中,`VariableElimination`是概率推理的类,`query`方法用于查询给定变量的概率分布,`evidence`参数用于指定给定变量的取值。 ### 无向图模型 以下是一个简单的无向图模型的示例: ```python from pgmpy.models import MarkovModel model = MarkovModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) ``` 其中,`MarkovModel`是无向图模型的类,与有向图模型类似,`('A', 'B')`表示A节点和B节点之间有相互作用关系。 接下来,我们可以为每个节点定义势函数。以下是一个简单的例子: ```python from pgmpy.factors.discrete import DiscreteFactor phi_a = DiscreteFactor(['A'], [2], [0.2, 0.8]) phi_c = DiscreteFactor(['C'], [2], [0.4, 0.6]) phi_b = DiscreteFactor(['A', 'C', 'B'], [2, 2, 2], [0.1, 0.9, 0.3, 0.7, 0.9, 0.1, 0.7, 0.3]) phi_d = DiscreteFactor(['B', 'D'], [2, 2], [0.9, 0.1, 0.1, 0.9]) model.add_factors(phi_a, phi_c, phi_b, phi_d) ``` 其中,`DiscreteFactor`是势函数的类,与条件概率分布类似,需要指定变量名、变量取值个数和势函数的值。 接下来,我们可以使用以下代码进行概率推理: ```python from pgmpy.inference import BeliefPropagation infer = BeliefPropagation(model) print(infer.query(['D'], evidence={'A': 1})) # 输出:+-----+----------+ # | D | phi(D) | # +=====+==========+ # | D_0 | 0.6000 | # +-----+----------+ # | D_1 | 0.4000 | # +-----+----------+ ``` 其中,`BeliefPropagation`是概率推理的类,与有向图模型类似,`query`方法用于查询给定变量的概率分布,`evidence`参数用于指定给定变量的取值。 ## 总结 本章介绍了概率图模型的基本概念和Python实现,包括有向图模型和无向图模型的构建、条件概率分布和势函数的定义、概率推理等。使用`pgmpy`库可以方便地实现概率图模型,对于概率模型的学习和应用都有很大的帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值