文章目录
一、提出任务
-
单词计数是学习分布式计算的入门程序,有很多种实现方式,例如MapReduce;使用Spark提供的RDD算子可以更加轻松地实现单词计数。
-
在IntelliJ IDEA中新建Maven管理的Spark项目,并在该项目中使用Scala语言编写Spark的WordCount程序,最后将项目打包提交到Spark集群(Standalone模式)中运行。
-
预备工作:启动集群的HDFS与Spark
-
HDFS上的单词文件 -
words.txt
二、完成任务
(一)新建Maven项目
-
新建Maven项目,基于JDK1.8
-
设置项目信息(项目名称、保存位置、组编号以及项目编号)
-
单击【Finish】按钮
-
将
java
目录改成scala
目录
(二)添加相关依赖和构建插件
- 在
pom.xml
文件里添加依赖与Maven构建插件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>net.Lee.rdd</groupId>
<artifactId>sparkRDDWordCount</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.12</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.1</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.3.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.3.2</version>
<executions>
<execution>
<id>scala-compile-first</id>
<phase>process-resources</phase>
<goals>
<goal>add-source</goal>
<goal>compile</goal>
</goals>
</execution>
<execution>
<id>scala-test-compile</id>
<phase>process-test-resources</phase>
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
- 由于源程序目录改成了
scala
,在<build>
元素里必须添加子元素<sourceDirectory>
,指定目录src/main/scala
(三)创建日志属性文件
- 在资源文件夹里创建日指数型文件 -
log4j.properties
log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spark.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
12345678
(四)创建词频统计单例对象
- 在
net.Lee.rdd
包里创建WordCount
单例对象
package net.Lee.rdd
import org.apache.spark.{SparkConf, SparkContext}
/**
* 功能:利用RDD实现词频统计
* 作者:LEE
* 日期:2022年06月14日
*/
object WordCount {
def main(args: Array[String]): Unit = {
System.setProperty("HADOOP_USER_NAME","root")
//创建Spark配置对象
val conf = new SparkConf()
.setAppName("SparkRDDWordCount") //设置应用名称
.setMaster("local[*]") //设置主节点位置
//基于Spark配置对象创建Spark容器
val sc = new SparkContext(conf);
//判断命令行参数个数
var inputPath = "";
var outputPath = "";
if (args.length == 0) {
inputPath = "hdfs://master:9000/input/word.txt";
outputPath = "hdfs://master:9000/WC_result";
} else if (args.length == 1) {
inputPath = args(0); //用户指定
outputPath = "hdfs://master:9000/WC_result";
} else if (args.length == 2) {
inputPath = args(0);
outputPath = args(1);
} else {
println()
}
//进行词频统计
val wc = sc.textFile(inputPath) //读取文件,得到rdd
.flatMap(_.split(" ")) //扁平化映射,得到单词数组
.map((_, 1)) // 针对单词得到二元组(word,1)
.reduceByKey(_ + _) //按键进行组合(key相同,value就累加)
.sortBy(_._2, false) //按照单词个数降序排列
// .saveAsTextFile(outputPath); //词频统计结果保存到指定位置
//输出词频统计
wc.collect.foreach(println)
//词频统计结果保存到指定位置
wc.saveAsTextFile(outputPath);
//停止Spark容器,结束任务
sc.stop()
}
}
(五)本地运行程序,查看结果
-
首先看控制台输出结果
-
然后查看HDFS上的结果文件内容
-
有两个结果文件,我们可以分别查看其内容
-
创建文本文件 - word.txt
-
上传到HDFS的
/input
目录
-
给程序设置命令行参数(注意两个参数之间必须有空格)
hdfs://master:9000/input/word.txt hdfs://master:9000/word_result
-
运行程序,查看控制台输出结果
-
查看HDFS上的结果文件内容
(六)对于程序代码进行解析
- SparkConf对象的setMaster()方法用于设置Spark应用程序提交的URL地址。若是Standalone集群模式,则指Master节点的访问地址;若是本地(单机)模式,则需要将地址改为local或local[N]或local[*],分别指使用1个、N个和多个CPU核心数。本地模式可以直接在IDE中运行程序,不需要Spark集群。
- 此处也可不设置。若将其省略,则使用
spark-submit
提交该程序到集群时必须使用--master
参数进行指定。 - SparkContext对象用于初始化Spark应用程序运行所需要的核心组件,是整个Spark应用程序中很重要的一个对象。启动Spark Shell后默认创建的名为sc的对象即为该对象。
- textFile()方法需要传入数据来源的路径。数据来源可以是外部的数据源(HDFS、S3等),也可以是本地文件系统(Windows或Linux系统),路径可以使用以下3种方式:
(1)文件路径:例如textFile("/input/data.txt ")
,此时将只读取指定的文件。
(2)目录路径:例如textFile("/input/words/")
,此时将读取指定目录words下的所有文件,不包括子目录。
(3)路径包含通配符:例如textFile("/input/words/*.txt")
,此时将读取words目录下的所有TXT文件。 - 该方法将读取的文件中的内容按行进行拆分并组成一个RDD集合。假设读取的文件为
words.txt
,则上述代码的具体数据转化流程如下图所示。
(七)将Spark项目编译和打包
-
展开IDEA右侧的
Maven窗口
,双击其中的package
项,将编写好的SparkRDDWordCount
项目进行编译和打包
-
在
target
目录里生成了两个jar包,一个没有带依赖,一个带了依赖,我们使用没有带依赖的jar包 -SparkRDDWordCount-1.0-SNAPSHOT.jar
(八)将词频统计应用上传到虚拟机
-
在
master
虚拟机上新建目录/app
-
找到
sparkRDDWordCount-1.0-SNAPSHOT.jar
的位置,然后上传到虚拟机的/app
目录
(九)在集群上执行词频统计应用
- 先把HDFS上存放结果文件的目录
/WC_result
删除
1、提交应用程序到集群中运行
(1)不带参数运行程序
- 执行命令:
spark-submit --master spark://master:7077 --class net.Lee.rdd.WordCount sparkRDDWordCount-1.0-SNAPSHOT.jar
-
提交到Spark集群上运行
-
可以查看到输出结果
-
还可以查看HDFS的结果文件
(2)带参数运行程序
- 执行命令:
spark-submit --master spark://master:7077 --class net.Lee.rdd.WordCount sparkRDDWordCount-1.0-SNAPSHOT.jar hdfs://master:9000/input/word.txt hdfs://master:9000/word_result
-
查看输出结果
-
还可以查看HDFS上结果文件