【Spark SQL案例分析】

本文详细介绍了如何使用SparkSQL实现词频统计,从创建Maven项目到配置依赖,再到编写Scala代码实现统计过程,最后展示了词频统计结果。通过步骤演示,读者可以了解整个数据处理流程,包括数据读取、切分、转换为数据帧和执行SQL查询。
摘要由CSDN通过智能技术生成

一、使用Spark SQL实现词频统计

(一)数据源 - words.txt

在这里插入图片描述

(二)创建Maven项目

  • 创建Maven项目 - SparkSQLWordCount
    在这里插入图片描述

    在这里插入图片描述

(三)添加依赖和构建插件

  • pom.xml文件里添加依赖和构建插件
    在这里插入图片描述
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>net.Lee.wc</groupId>
    <artifactId>SparkSQLWordCount</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.11.8</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.3.2</version>
                <executions>
                    <execution>
                        <id>scala-compile-first</id>
                        <phase>process-resources</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>scala-test-compile</id>
                        <phase>process-test-resources</phase>
                        <goals>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

(四)修改源目录名称

  • 将源目录名由java改成scala
    在这里插入图片描述

  • pom.xml文件里,设置源目录

  • 添加<sourceDirectory>src/main/scala</sourceDirectory>
    在这里插入图片描述

(五)创建日志属性文件

  • 在resources目录里创建log4j.properties文件
    在这里插入图片描述
log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spark.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

(六)创建词频统计单例对象

  • 创建net.Lee.wc包,在包里创建SparkSQLWordCount单例对象
    在这里插入图片描述
package net.Lee.wc

import org.apache.spark.sql.{Dataset, SparkSession}

/**
 * 功能:利用Spark SQL实现词频统计
 * 作者:LEE
 * 日期:2022年06月19日
 */
object SparkSQLWordCount {
  def main(args: Array[String]): Unit = {
    // 设置HADOOP用户名属性,否则本地运行访问会被拒绝
    System.setProperty("HADOOP_USER_NAME", "root")
    // 创建或得到SparkSession
    val spark = SparkSession.builder()
      .appName("SparkSQLWordCount")
      .master("local[*]")
      .getOrCreate()
    // 读取HDFS上的单词文件
    val lines: Dataset[String] = spark.read.textFile("hdfs://master:9000/input/words.txt")
    // 显示数据集lines内容
    lines.show()
    // 导入Spark会话对象的隐式转换
    import spark.implicits._
    // 将数据集中的数据按空格切分并合并
    val words: Dataset[String] = lines.flatMap(_.split(" "))
    // 显示数据集words内容
    words.show()
    // 将数据集默认列名由value改为word,并转换成数据帧
    val df = words.withColumnRenamed("value", "word").toDF()
    // 显示数据帧内容
    df.show()
    // 基于数据帧创建临时视图
    df.createTempView("v_words")
    // 执行SQL分组查询,实现词频统计
    val wc = spark.sql(
      """
        | select word, count(*) as count
        |    from v_words group by word
        |    order by count desc
        |""".stripMargin)
    // 显示词频统计结果
    wc.show()
    // 关闭会话
    spark.close()
  }
}

(七)启动程序,查看结果

  • 运行SparkSQLWordCount单例对象
    在这里插入图片描述

(八)词频统计数据转化流程图

  • 文本文件,转化成数据集,再转化成数据帧,最后基于表查询得到结果数据帧
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

热心市民小李同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值