混合编码网络
https://blog.csdn.net/u013567842/article/details/57190362
本文提出了一种端到端的学习模型,称为混合编码网络(HCNs)解决这些问题。除了学习RNN,HCNs也允许开发者表示领域知识通过软件和操作模板。实验表 明,相比现有的回归的端到端的技术,HCNs达到相同的性能,较少的训练数据,同时保留了端到端的可训练性的关键利益。此外,神经网络可以训练与监督 学习或强化学习,通过改变梯度更新应用。
步骤
- 用户输入指令(2-5步将其信息特征化)
- 特征化输入信息,形成bag of words vector
- 预先设计好的话语嵌入模型(utterance embedding)
- 命名实体识别(exp:识别姓名,地名等)
- 实体跟踪,映射实体到数据库中的特定行
- 将1-5整合成一个特征向量(使用LSTM或GRU)
- RNN计算隐藏层向量
- 由RNN保留
- 通过一个 a dense layer with a softmax activation,输出不同模型的指令(细节在4-6部分)
- 归一化函数
- 产生不同行动的概率分布
- 选择执行哪一动作
- 接下来选定的操作传递给“实体输出”开发者代码,可以在实体中进行替换,比如特定指令
- 根据动作的类型控制分支:转到15 or 17
- 如果它是API操作,则调用开发代码中的相应API调用
- 添加向量,返回特征向量(第6步)
- 如果该动作是文本,则将其呈现给用户