题目大意:一些作物种在A地里会获得Ai的收益,重在B地里会有Bi的收益,如果一些作物种在一起还会获得额外的收益。
看到这样好几种选择只能选择一种的题就应该想到最小割,我们将每一个作物向A地连一条容量为Ai的流,向B地连一条容量为BI的流,然后再将每一个组合新建一个节点,从A地向其连接一条容量为收益的流,这个点组合内每一个点连一条容量为INF的流,组合和B地的连法同理,将所有收益加在一起减去最小割就可以了
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<string>
#include<cstring>
#include<iostream>
#include<iomanip>
#include<algorithm>
#define INF 1000000000
using namespace std;
struct bian
{
int r,f;
}a[3000000];
int tot=1;
int d[3000000];
int fir[3000000];
int nex[3000000];
int s,t;
void add_edge(int l,int r,int f)
{
a[++tot].r=r;
a[tot].f=f;
nex[tot]=fir[l];
fir[l]=tot;
}
bool bfs()
{
static int dui[3000000];
int top=1,my_final=2;
memset(d,-1,sizeof(d));
d[s]=0;
dui[top]=s;
while(top<my_final)
{
int u=dui[top];
for(int o=fir[u];o!=0;o=nex[o])
{
if(d[a[o].r]!=-1 || !a[o].f) continue;
dui[my_final++]=a[o].r;
d[a[o].r]=d[u]+1;
if(a[o].r==t) return true;
}
top++;
}
return false;
}
int dinic(int u,int flow)
{
if(u==t) return flow;
int left=flow;
for(int o=fir[u];o!=0&&left;o=nex[o])
{
if(d[a[o].r]==d[u]+1 && a[o].f)
{
int temp=dinic(a[o].r,min(left,a[o].f));
if(temp==0) d[a[o].r]=-1;
left-=temp;
a[o].f-=temp;
a[o^1].f+=temp;
}
}
return flow-left;
}
int main()
{
int n,m;
scanf("%d",&n);
s=0;t=999999;
int ans=0;
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
ans+=x;
add_edge(s,i,x);
add_edge(i,s,0);
}
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
ans+=x;
add_edge(i,t,x);
add_edge(t,i,0);
}
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
int k;
scanf("%d",&k);
int v1,v2;
scanf("%d%d",&v1,&v2);
add_edge(s,i+n,v1);
add_edge(i+n,s,0);
add_edge(i+n+m,t,v2);
add_edge(t,i+n+m,0);
ans+=v1+v2;
for(int j=1;j<=k;j++)
{
int x;
scanf("%d",&x);
add_edge(i+n,x,INF);
add_edge(x,i+n,0);
add_edge(x,i+n+m,INF);
add_edge(i+n+m,x,0);
}
}
while(bfs()) ans-=dinic(s,INF);
cout<<ans;
return 0;
}