(网络流24题大多需要spj,所以需要一个有spj的oj,本系列代码均在www.oj.swust.edu.cn测试通过)
最大权闭合子图裸题,先将所有收益加起来,源点向每个方案连接一条收益的流,每个方案向对应需要的仪器连一条INF,每个仪器向汇点连一条花费的流。
输出方案只需要在最后的阻塞流中看还剩哪几个点就好了
#include<cstdio>
#include<cstdlib>
#include<iomanip>
#include<iostream>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
using namespace std;
#define INF 100000000
struct bian
{
int l,r,f,lei;
}a[1000000];
int fir[1000000];
int nex[1000000];
int d[1000000];
int tot=1;
void add_edge(int l,int r,int f,int lei=0)
{
a[++tot].l=l;
a[tot].r=r;
a[tot].f=f;
a[tot].lei=lei;
nex[tot]=fir[l];
fir[l]=tot;
}
int s=0,t=999999;
bool bfs()
{
static int dui[1000000];
int top=1,my_final=2;
memset(d,-1,sizeof(d));
d[s]=0;
dui[top]=s;
while(top<my_final)
{
int u=dui[top];
for(int o=fir[u];o!=0;o=nex[o])
{
if(d[a[o].r]!=-1 || !a[o].f) continue;
dui[my_final++]=a[o].r;
d[a[o].r]=d[u]+1;
if(a[o].r==t) return true;
}
top++;
}
return false;
}
int dinic(int u,int flow)
{
if(u==t) return flow;
int left=flow;
for(int o=fir[u];o!=0&&left;o=nex[o])
{
if(d[a[o].r]==d[u]+1 && a[o].f)
{
int temp=dinic(a[o].r,min(left,a[o].f));
if(temp==0) d[a[o].r]=-1;
left-=temp;
a[o].f-=temp;
a[o^1].f+=temp;
}
}
return flow-left;
}
int main()
{
int m,n;
scanf("%d%d",&m,&n);
int ans=0;
for(int i=1;i<=m;i++)
{
char c;
while(c<'0' || c>'9') scanf("%c",&c);
int x=0;
while(c<='9' && c>='0') x=x*10+c-'0',scanf("%c",&c);
add_edge(s,i,x,1);
add_edge(i,s,0);
ans+=x;
while(c!='\n' && c!='\r')
{
int y=0;
while(c<'0' || c>'9')
{
if(c=='\n' || c=='\r') break;
scanf("%c",&c);
}
if(c=='\n' || c=='\r') break;
while(c<='9' && c>='0') y=y*10+c-'0',scanf("%c",&c);
add_edge(i,m+y,INF);
add_edge(m+y,i,0);
}
}
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
add_edge(m+i,t,x,2);
add_edge(t,m+i,0);
}
while(bfs())
{
int t=dinic(s,INF);
ans-=t;
}
for (int i=1;i<=m;i++)
if (d[i]!=-1)
printf("%d ",i);
putchar('\n');
for (int i=m+1;i<=m+n;i++)
if (d[i]!=-1)
printf("%d ",i-m);
cout<<endl;
cout<<ans<<endl;
return 0;
}