poj 3984 迷宫问题(简单迷宫)

迷宫问题
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 18530 Accepted: 10967

Description

定义一个二维数组: 
int maze[5][5] = {

	0, 1, 0, 0, 0,

	0, 1, 0, 1, 0,

	0, 0, 0, 0, 0,

	0, 1, 1, 1, 0,

	0, 0, 0, 1, 0,

};

它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。

Input

一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。

Output

左上角到右下角的最短路径,格式如样例所示。

Sample Input

0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0

Sample Output

(0, 0)
(1, 0)
(2, 0)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(3, 4)
(4, 4)
#include <stdio.h>

int map[10][10];
struct node{
	int x,y,pre;
}dij[100];

int dir[4][2]={1,0,-1,0,0,-1,0,1};

void output(int t)
{
//	printf("**********\n");
	if(dij[t].pre==-1)
		return ;
	else
	{
		output(dij[t].pre);
		printf("(%d, %d)\n",dij[t].x-1,dij[t].y-1);
	}
}

void bfs()
{
	int i,j;
	int a=0,b=0;
	int front,rear;
	
	front=0;
	rear=1;
	dij[front].x=1;
	dij[front].y=1;
	dij[front].pre=-1;//代表无前驱 
	while(front<rear)
	{
//		printf("-----%d----->\n",front);
//		printf("-----%d----->\n",rear);
		for(i=0;i<4;i++)
		{
			a=dij[front].x+dir[i][0];
			b=dij[front].y+dir[i][1];
			if(map[a][b])
				continue;
			else
			{
				map[a][b]=1;
				dij[rear].x=a;
				dij[rear].y=b;
				dij[rear].pre=front;
				rear++;
			}
			if(a==5&&b==5)
			{
				output(front);
			}
		}
		front++;
	}
}

int main()
{
	int i,j;
	
	for(i=1;i<=5;i++)
	{
		for(j=1;j<=5;j++)
		{
			scanf("%d",&map[i][j]);
		}
	}
	
	for(i=0;i<=6;i++)
	{
		map[i][0]=1;
		map[i][6]=1;
		map[0][i]=1;
		map[6][i]=1;
	}
	/*for(i=0;i<=6;i++)
	{
		for(j=0;j<=6;j++)
		{
			printf("%d ",map[i][j]);
		}
		printf("\n");
	}*/
	printf("(0, 0)\n");
	bfs();
	printf("(4, 4)\n");
	
	return 0;
}


问题描述: 以一个m*n的长方阵表迷宫,0和1分别表迷宫中的通路和障碍。设计一个程序,对任意设定的迷宫,求出从入口(0,0)到出口(m-1,n-1)的通路和通路总数,或得出没有通路的结论。例如下图, 0(入口) 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0(出口) 从入口出口有6条不同的通路。 而下图: 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 从入口出口则没有通路。 算法设计: 给定一个m*n的长方阵表迷宫,设计算法输出入口出口的通路和通路总数,或得出没有通路的结论。 算法提: 和皇后问题与分书问题类似。可以用二维数组存储迷宫数据,对于迷宫中任一位置,均可约定有东、南、西、北四个方向可通。从当前位置a(用(x,y)表一个位置,假定它是以向右的x轴和向下的y轴组成的平面上的一个点)出发依次尝试四个方向是否有路,若某个方向的位置b可通,则按照同样的方法继续从b出发寻找。若到达出口,则找到一条通路。 数据输入: 由文件input.txt 提供输入数据。第一行是m和n的值,空格分隔,其后共m行。每行有n个数字,数和数之间用空格分隔。 结果输出: 将计算出的所有从入口出口的通路输出到文件output.txt 中。若没有通路,则将0写入文件中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值