提高—数学知识

筛质数

虽然是基础课,但是不是简单的意思,从难度来看,提高课也难不了多少,提高课主要讲应用。

夏洛特和他的女朋友

错误原因题目没有看懂,不明白下面这句话

一件珠宝的价格是另一件珠宝的价格的质因子时,两件珠宝的颜色不同。 以为 2 ,4 , 6, 8......等需要四个颜色

其实很简单,就是给所有质数染成一,合数染成二,特判下n等于多少时,染料的个数才大于1.


#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+5; 
int prime[N];//只是临时存一下 
bool vis[N];// 最终主函数查看这个是否为素数 
void get_prime() {
    memset(vis,true,sizeof vis);
    memset(prime,0,sizeof prime);
    vis[0] = vis[1] = false;
    for(int i = 2; i <= N; ++i) 
    {    
        if (vis[i]) {
            prime[++prime[0]] = i;//prime[0]相当于全局变量定义一个K 
        }
        for(int j = 1;j <= prime[0] && i * prime[j] <= N; ++j) {
            vis[i * prime[j]] = false;
            if (i % prime[j] == 0) //避免重复筛选 // 如果等于零  primes[i] 一定是i的最小质因子,则p 一定是p *i 的最小质因子,如果不等于零,p 一定小于i的所有质因子             
                break;
        }
    }
}
int main()
{
    int n ;
    get_prime() ;
    cin >> n;
    int m = 0 ;
    if( n <= 2) m = 1 ;
    else m = 2;
    cout << m << endl;
    for( int i= 1 ; i <= n ; i++)
    {
        if(vis[i+1])
        cout << 1<<" ";
        else cout << 2 << " "; 
    }
    
    return 0;
}

质数距离

题目数据范围比较大,注意筛发是筛1 - n ,不能筛某个区间[ l , r];但是题目中说其中 LU 的差值不会超过 1e6。

这里有一个核心的性质就是:任何一个合数n,一定存在一个质因子,小于等于根号n

因此可以把1 -根号 2^31-1的质数给筛出来

这个就很小了 ,大小也就是四万到五万之间,所以就是把1 到 五万之间的质数都筛出来,那么此时U到L之间的合数都存在1 到 五万之间的质因子。把这些质数的倍数(U到L之间)全部筛掉,剩下来的就是质数。

补充:j应该等于 大于等于L的最小的一个P的倍数 ,那么这个数应该咋找到呢?

注意图片里是上取整,也给出了如何下取整、。


#include <bits/stdc++.h>
using namespace std;
const int  N = 1e6 + 10 , M = 5e4 + 10;
int primes[M] , cnt;
bool st[N];
void get_primes(int n)
{
    memset( st , false , sizeof st);
    cnt = 0;
    for( int i = 2 ; i <= n ; i++)
    {
        if(!st[i])  primes[cnt++] = i;
        for( int j = 0 ; primes[j] * i <= n ; j++)
        {
            st[primes[j] * i] = true;
            if( i % primes[j] == 0)  break;
        }
    }
}

int main()
{
    long long  l ,r ;
    while(cin >> l >> r)
    {
        get_primes(50000);
        memset( st , false , sizeof st);//清空一下 , 因为刚才的事就用过了 
        for( int i = 0 ; i < cnt ; i++)
        {
            int p = primes[i];
            // 把【L,R】中的所有P的倍数筛掉
            for( long long  j = max((l + p -1) / p * p  , 2ll * p); j <= r ; j += p ) //j应该等于   大于等于L的最小的一个P的倍数 
            {//因为(l + p - 1)/p可能等于p,然后错误地标记st[i] = true,这样就把一个质数p错误地标记成了合数,所以至少要从2*p开始
                st[j -l] = true;//注意偏移量 
            }
        }
        
        cnt = 0 ;
        for( int i = 0 ; i <= r - l; i++)
        {
            if( !st[i]&& i + l > 1)
                primes[cnt++] = i + l;
        }
        if( cnt < 2 )  puts("There are no adjacent primes.");
        else 
        {
            int mins = 0 ,maxp = 0 ;
            for( int i = 0 ; i + 1 < cnt ; i++)
            {
                int d = primes[i +1] - primes[i];
                if( d < primes[mins + 1] - primes[mins]) mins = i;
                if( d > primes[maxp + 1] - primes[maxp]) maxp = i;
            }
            printf("%d,%d are closest, %d,%d are most distant.\n" , primes[mins] , primes[mins + 1] , primes[maxp] , primes[maxp + 1]);
        }
    }
    return 0;    
}

阶乘分解

阶乘分解

精简代码


#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int primes[N] , cnt;
bool st[N];

void init( int n)//简单线性筛发
{
    for( int i = 2 ; i <= n ; i++)
    {
        if(!st[i]) primes[cnt++] = i;
        for( int j = 0 ; primes[j] * i <= n ; j++)
        {
            st[i * primes[j]] = true;
            if( i % primes[j] == 0)  break;
        }
    }
}
int main()
{
    int n ;
    cin >> n ;
    init( n );
    for( int i = 0 ; i < cnt ; i++)
    {
        int p = primes[i];
        int s = 0 ;
        for( int j = n ; j ; j /= p) s += j / p;
        cout << p << " " << s << endl;
    }
    return 0;
}

快速幂

序列的第K个数


#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int mod = 200907;
int qmi(int a, int k)
{
    int res = 1;
    while (k)
    {
        if (k & 1)
            res = (LL)res * a % mod;
        a = (LL)a * a % mod;
        k >>= 1;
    }
    return res;
}

int main()
{
    int n;
    cin >> n;
    while (n--)
    {
        int a, b, c, k;
        cin >> a >> b >> c >> k;
        if (a + c == b * 2)
            cout << (a + (b - a) * (LL)(k - 1)) % mod << endl;
        else
            cout << (LL)a * qmi(b / a, k - 1) % mod << endl;
    }
    system("pause");
    return 0;
}

越狱

对于这题真是无语了,想了半天,感觉还是很模糊。看了答案也是略懂非懂的。

考虑 n 个犯人,m种宗教,如何安排不会导致犯罪。第一个位置可以有 m个选择,则与第一个相邻的第二个位置就只有 m−1中选择。考虑第 i个位置,则为了不和他左侧的 i−1 位置发生冲突,一共有 m−1

种选择。因此不会导致犯罪的方案是: m⋅(m−1)^n−1

则会导致犯罪的方案是:m^n−m⋅(m−1)^n−1

但是本题可能有个很大的坑,就是最后答案可能是负数。

你好,我问一下 这里答案加mod再取余是防止取模结果为负数,可前面一项一定比后面一项大啊,不可能是负数啊。为啥要加一个mod呢?

例如模数是 10,那么 11 - 8 取模以后就是 1 - 8 是负数


#include <bits/stdc++.h>
using namespace std;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值