递归定量分析(RQA)详解
1. 引言
递归定量分析(Recurrence Quantification Analysis, RQA)是一种用于分析非线性动力系统的强大工具,它能够量化系统中的重复模式和结构特征。这种方法最初由Zbilut和Webber于1992年提出,随后由Marwan等人进一步扩展和完善。RQA是建立在递归图(Recurrence Plot, RP)基础上的定量分析方法,通过将递归图中的各种结构特征量化,从而揭示动力系统的内在特性。
2. 递归图的基本原理
2.1 庞加莱回复性定理
递归图的理论基础可以追溯到庞加莱回复性定理。该定理指出:在一定的条件下,系统的某个状态在经过充分长的时间后,将回到初始状态附近。数学上,对于一个哈密顿系统,几乎所有的轨道都是回复的,即对于相空间中的任意区域 Ω \Omega Ω,几乎所有从 Ω \Omega Ω 出发的轨道都会无限多次地返回该区域。
形式化表述为:对于相空间 M \mathcal{M} M 中的一个点 x \mathbf{x} x,如果它所在轨道是回复的,则对于任意 ε > 0 \varepsilon > 0 ε>0,存在无穷多个时间点 { t k } k = 1 ∞ \{t_k\}_{k=1}^{\infty} {tk}k=1∞,使得:
∥ x ( t k ) − x ∥ < ε , k = 1 , 2 , … , ∞ \|\mathbf{x}(t_k) - \mathbf{x}\| < \varepsilon, \quad k = 1, 2, \ldots, \infty ∥x(tk)−x∥<ε,k=1,2,…,∞
其中, x ( t ) \mathbf{x}(t) x(t) 表示从 x \mathbf{x} x 出发,经过时间 t t t 后的系统状态。
2.2 相空间重构
构造递归图的关键步骤是进行相空间重构。相空间重构基于嵌入理论,其核心是Takens嵌入定理。
2.2.1 Takens嵌入定理
对于一个 d d d 维动力系统:
d x d t = F ( x ) , x ∈ R d \frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^d dtdx=F(x),x∈Rd
假设我们只能观测到一个标量时间序列 { s ( t i ) } i = 1 N \{s(t_i)\}_{i=1}^N {s(ti)}i=1N,Takens定理指出,在一定条件下,我们可以通过时间延迟坐标法重构一个与原系统拓扑等价的相空间。具体来说,如果原系统的吸引子维数为 d A d_A dA,则对于几乎所有的光滑观测函数 h : R d → R h: \mathbb{R}^d \rightarrow \mathbb{R} h:Rd→R,重构向量:
y ( t ) = [ s ( t ) , s ( t − τ ) , s ( t − 2 τ ) , … , s ( t − ( m − 1 ) τ ) ] \mathbf{y}(t) = [s(t), s(t-\tau), s(t-2\tau), \ldots, s(t-(m-1)\tau)] y(t)=[s(t),s(t−τ),s(t−2τ),…,s(t−(m−1)τ)]
形成的 m m m 维相空间(其中 m ≥ 2 d A + 1 m \geq 2d_A + 1 m≥2dA+1, τ \tau τ 为时间延迟)与原系统的吸引子在拓扑上是等价的,即存在一个微分同胚 Φ : A → A ′ \Phi: \mathcal{A} \rightarrow \mathcal{A}' Φ:A→A′,将原系统的吸引子 A \mathcal{A} A 映射到重构空间中的吸引子 A ′ \mathcal{A}' A′。
2.2.2 延迟坐标法的数学表述
给定时间序列 { s ( t i ) } i = 1 N \{s(t_i)\}_{i=1}^N {s(ti)}i=1N,重构的相空间向量为:
y ( t i ) = [ s ( t i ) , s ( t i − τ ) , s ( t i − 2 τ ) , … , s ( t i − ( m − 1 ) τ ) ] T \mathbf{y}(t_i) = [s(t_i), s(t_i-\tau), s(t_i-2\tau), \ldots, s(t_i-(m-1)\tau)]^T y(ti)=[s(ti),s(ti−τ),s(ti−2τ),…,s(ti−(m−1)τ)]T
其中, i = ( m − 1 ) τ + 1 , ( m − 1 ) τ + 2 , … , N i = (m-1)\tau+1, (m-1)\tau+2, \ldots, N i=(m−1)τ+1,(m−1)τ+2,…,N, τ \tau τ 是时间延迟, m m m 是嵌入维度。
重构的相空间轨道可以表示为一个矩阵:
Y = [ s ( t ( m − 1 ) τ + 1 ) s ( t ( m − 1 ) τ + 1 − τ ) ⋯ s ( t ( m − 1 ) τ + 1 − ( m − 1 ) τ ) s ( t ( m − 1 ) τ + 2 ) s ( t ( m − 1 ) τ + 2 − τ ) ⋯ s ( t ( m − 1 ) τ + 2 − ( m − 1 ) τ ) ⋮ ⋮ ⋱ ⋮ s ( t N ) s ( t N − τ ) ⋯ s ( t N − ( m − 1 ) τ ) ] \mathbf{Y} = \begin{bmatrix} s(t_{(m-1)\tau+1}) & s(t_{(m-1)\tau+1-\tau}) & \cdots & s(t_{(m-1)\tau+1-(m-1)\tau}) \\ s(t_{(m-1)\tau+2}) & s(t_{(m-1)\tau+2-\tau}) & \cdots & s(t_{(m-1)\tau+2-(m-1)\tau}) \\ \vdots & \vdots & \ddots & \vdots \\ s(t_N) & s(t_N-\tau) & \cdots & s(t_N-(m-1)\tau) \end{bmatrix} Y= s(t(m−1)τ+1)s(t(m−1)τ+2)⋮s(tN)s(t(m−1)τ+1−τ)s(t(m−1)τ+2−τ)⋮s(tN−τ)⋯⋯⋱⋯s(t(m−1)τ+1−(m−1)τ)s(t(m−1)τ+2−(m−1)τ)⋮s(tN−(m−1)τ)
2.3 最优嵌入参数的确定
2.3.1 时间延迟的确定
时间延迟 τ \tau τ 的选择对相空间重构的质量有重要影响。太小的 τ \tau τ 会导致重构向量的分量高度相关,太大的 τ \tau τ 则可能导致分量之间失去关联。通常使用以下方法确定最优时间延迟:
- 互信息法:最优时间延迟 τ o p t \tau_{opt} τopt 是互信息函数 I ( τ ) I(\tau) I(τ) 的第一个局部极小值:
I ( τ ) = ∑ i , j p i j ( τ ) log 2 p i j ( τ ) p i p j I(\tau) = \sum_{i,j} p_{ij}(\tau) \log_2 \frac{p_{ij}(\tau)}{p_i p_j} I(τ)=i,j∑pij(τ)log2pipjpij(τ)
其中, p i p_i pi 是信号值落在第 i i i 个区间的概率, p j p_j pj 是信号值落在第 j j j 个区间的概率, p i j ( τ ) p_{ij}(\tau) pij(τ) 是信号值在时间 t t t 落在第 i i i 个区间且在时间 t + τ t+\tau t+τ 落在第 j j j 个区间的联合概率。
- 自相关函数法:最优时间延迟 τ o p t \tau_{opt} τopt 是自相关函数 C ( τ ) C(\tau) C(τ) 首次降到 1 / e 1/e 1/e 或首次过零点的时间:
C ( τ ) = ∑ i = 1 N − τ ( s ( t i ) − s ˉ ) ( s ( t i + τ ) − s ˉ ) ∑ i = 1 N ( s ( t i ) − s ˉ ) 2 C(\tau) = \frac{\sum_{i=1}^{N-\tau} (s(t_i) - \bar{s})(s(t_{i+\tau}) - \bar{s})}{\sum_{i=1}^{N} (s(t_i) - \bar{s})^2} C(τ)=∑i=1N(s(ti)−sˉ)2∑i=1N−τ(s(ti)−sˉ)(s(ti+τ)−sˉ)
其中, s ˉ \bar{s} sˉ 是时间序列的平均值。
- Theiler窗口:为了避免时间相关性带来的假递归,通常使用Theiler窗口 w w w 排除主对角线附近的点:
w ≥ τ d e c o r r w \geq \tau_{decorr} w≥τdecorr
其中, τ d e c o r r \tau_{decorr} τdecorr 是序列的装饰时间,通常取为自相关函数首次降到零的时间。
2.3.2 嵌入维度的确定
嵌入维度 m m m 的选择也是相空间重构的关键。理论上, m ≥ 2 d A + 1 m \geq 2d_A + 1 m≥2dA+1 足以确保重构的拓扑等价性,但在实际应用中,我们通常不知道吸引子的真实维数 d A d_A dA。常用的确定嵌入维度的方法是假近邻法(False Nearest Neighbors, FNN):
- 对于每个点 y i ( m ) \mathbf{y}_i^{(m)} yi(m) 在 m m m 维相空间中,找到其最近邻点 y j ( m ) \mathbf{y}_j^{(m)} yj(m)。
- 计算它们在 m + 1 m+1 m+1 维空间中的距离变化率:
R i ( m ) = ∥ y i ( m + 1 ) − y j ( m + 1 ) ∥ 2 − ∥ y i ( m ) − y j ( m ) ∥ 2 ∥ y i ( m ) − y j ( m ) ∥ 2 R_i^{(m)} = \frac{\|\mathbf{y}_i^{(m+1)} - \mathbf{y}_j^{(m+1)}\|^2 - \|\mathbf{y}_i^{(m)} - \mathbf{y}_j^{(m)}\|^2}{\|\mathbf{y}_i^{(m)} - \mathbf{y}_j^{(m)}\|^2} Ri(m)=∥yi(m)−yj(m)∥2∥yi(m+1)−yj(m+1)∥2−∥yi(m)−yj(m)∥2
- 如果 R i ( m ) > R t h r R_i^{(m)} > R_{thr} Ri(m)>Rthr(通常取 R t h r = 10 R_{thr} = 10 Rthr=10),则称点 y i ( m ) \mathbf{y}_i^{(m)} yi(m) 和 y j ( m ) \mathbf{y}_j^{(m)} yj(m) 为假近邻。
- 计算假近邻点的比例:
F N N ( m ) = 1 N − ( m + 1 ) τ ∑ i = 1 N − ( m + 1 ) τ Θ ( R i ( m ) − R t h r ) FNN(m) = \frac{1}{N-(m+1)\tau} \sum_{i=1}^{N-(m+1)\tau} \Theta(R_i^{(m)} - R_{thr}) FNN(m)=N−(m+1)τ1i=1∑N−(m+1)τΘ(Ri(m)−Rthr)
其中, Θ \Theta Θ 是Heaviside函数。
- 最优嵌入维度 m o p t m_{opt} mopt 是使 F N N ( m ) FNN(m) FNN(m) 首次降到一个很小值(如1%)的最小 m m m 值。
2.4 递归图的构造
当我们完成相空间重构后,即可构造递归图。递归图反映的是重构相空间中状态向量之间的距离关系。
定义 \textbf{定义} 定义:给定相空间轨道 { y i } i = 1 M \{\mathbf{y}_i\}_{i=1}^M {yi}i=1M 和阈值 ε \varepsilon ε,递归图的数学定义为一个二维二值矩阵 R \mathbf{R} R:
R i , j ( ε ) = Θ ( ε − ∥ y i − y j ∥ ) , i , j = 1 , 2 , … , M R_{i,j}(\varepsilon) = \Theta(\varepsilon - \|\mathbf{y}_i - \mathbf{y}_j\|), \quad i,j = 1, 2, \ldots, M Ri,j(ε)=Θ(ε−∥yi−yj∥),i,j=1,2,…,M
其中:
- Θ ( ⋅ ) \Theta(\cdot) Θ(⋅) 是Heaviside阶跃函数
- ∥ ⋅ ∥ \|\cdot\| ∥⋅∥ 是范数,通常使用欧几里得范数、最大范数或曼哈顿范数
- M = N − ( m − 1 ) τ M = N - (m-1)\tau M=N−(m−1)τ 是重构相空间中的点数
为了考虑动力系统的时间相关性,通常使用Theiler窗口 w w w 来排除主对角线附近的点,修正的递归图定义为:
R i , j ( w ) ( ε ) = Θ ( ε − ∥ y i − y j ∥ ) ⋅ Θ ( ∣ i − j ∣ − w ) , i , j = 1 , 2 , … , M R_{i,j}^{(w)}(\varepsilon) = \Theta(\varepsilon - \|\mathbf{y}_i - \mathbf{y}_j\|) \cdot \Theta(|i-j| - w), \quad i,j = 1, 2, \ldots, M Ri,j(w)(ε)=Θ(ε−∥yi−yj∥)⋅Θ(∣i−j∣−w),i,j=1,2,…,M
阈值 ε \varepsilon ε 的选择对递归图的结构有重要影响。常用的选择方法包括:
- 固定百分比:选择 ε \varepsilon ε 使递归点的比例为相空间体积的一个固定百分比(通常为1%-5%)。
- 标准差的倍数: ε = k ⋅ σ \varepsilon = k \cdot \sigma ε=k⋅σ,其中 σ \sigma σ 是相空间点坐标的标准差, k k k 通常取0.1-0.5。
- 基于FAN算法:通过最大化递归图中斜线结构的比例来选择最优 ε \varepsilon ε。
3. 递归定量分析(RQA)方法
递归图虽然直观地展示了系统状态的递归特性,但它只能进行定性分析。递归定量分析(RQA)通过引入一系列统计量,对递归图中的结构特征进行定量分析,从而揭示系统的动力学性质。
3.1 RQA的基本参数
3.1.1 递归率(RR)
递归率(Recurrence Rate)是递归点在递归图中的密度,定义为:
R R = 1 M 2 ∑ i , j = 1 M R i , j ( ε ) = 1 M 2 ∑ i , j = 1 M Θ ( ε − ∥ y i − y j ∥ ) RR = \frac{1}{M^2} \sum_{i,j=1}^{M} R_{i,j}(\varepsilon) = \frac{1}{M^2} \sum_{i,j=1}^{M} \Theta(\varepsilon - \|\mathbf{y}_i - \mathbf{y}_j\|) RR=M21i,j=1∑MRi,j(ε)=M21i,j=1∑MΘ(ε−∥yi−yj∥)
递归率与递归图中黑点的百分比相对应,它反映了系统状态递归的总体水平。考虑到Theiler窗口 w w w 的影响,修正的递归率为:
R R ( w ) = 1 M ( M − w ) ∑ i = 1 M ∑ j = i + w M R i , j ( ε ) RR^{(w)} = \frac{1}{M(M-w)} \sum_{i=1}^{M} \sum_{j=i+w}^{M} R_{i,j}(\varepsilon) RR(w)=M(M−w)1i=1∑Mj=i+w∑MRi,j(ε)
3.1.2 对角线结构分析
递归图中的对角线结构对应于相空间轨道的平行段,反映了系统的确定性和可预测性。对角线的分布可以通过直方图 P ( l ) P(l) P(l) 来表示,其中 P ( l ) P(l) P(l) 是长度为 l l l 的对角线的数量。
定义 \textbf{定义} 定义:对角线是递归图中平行于主对角线的连续递归点,满足:
R i , j ( ε ) = 1 , R i − 1 , j − 1 ( ε ) = 0 , R i + l , j + l ( ε ) = 0 , and R i + k , j + k ( ε ) = 1 ∀ k ∈ { 0 , 1 , … , l − 1 } R_{i,j}(\varepsilon) = 1, \quad R_{i-1,j-1}(\varepsilon) = 0, \quad R_{i+l,j+l}(\varepsilon) = 0, \quad \text{and} \quad R_{i+k,j+k}(\varepsilon) = 1 \quad \forall k \in \{0, 1, \ldots, l-1\} Ri,j(ε)=1,Ri−1,j−1(ε)=0,Ri+l,j+l(ε)=0,andRi+k,j+k(ε)=1∀k∈{0,1,…,l−1}
基于对角线分布,可以计算一系列RQA参数:
- 确定性(DET):形成对角线结构的递归点占总递归点的比例(通常只考虑长度不小于 l m i n l_{min} lmin 的对角线, l m i n l_{min} lmin 通常取2):
D E T = ∑ l = l m i n M l ⋅ P ( l ) ∑ i , j = 1 M R i , j ( ε ) DET = \frac{\sum_{l=l_{min}}^{M} l \cdot P(l)}{\sum_{i,j=1}^{M} R_{i,j}(\varepsilon)} DET=∑i,j=1MRi,j(ε)∑l=lminMl⋅P(l)
确定性反映了系统行为的可预测性。随机系统的递归图中几乎只有分散的点,而确定性系统的递归图中包含较多的对角线。
- 平均对角线长度(L):对角线的平均长度:
L = ∑ l = l m i n M l ⋅ P ( l ) ∑ l = l m i n M P ( l ) L = \frac{\sum_{l=l_{min}}^{M} l \cdot P(l)}{\sum_{l=l_{min}}^{M} P(l)} L=∑l=lminMP(l)∑l=lminMl⋅P(l)
平均对角线长度反映了系统状态相似性持续的平均时长,与系统的可预测时间相关。
- 最大对角线长度(Lmax):最长对角线的长度(主对角线除外):
L m a x = max ( { l i } i = 1 N l ) L_{max} = \max(\{l_i\}_{i=1}^{N_l}) Lmax=max({li}i=1Nl)
其中, { l i } i = 1 N l \{l_i\}_{i=1}^{N_l} {li}i=1Nl 是所有对角线的长度集合, N l N_l Nl 是对角线的总数。
- 发散度(DIV):最大对角线长度的倒数:
D I V = 1 L m a x DIV = \frac{1}{L_{max}} DIV=Lmax1
发散度与系统的最大Lyapunov指数相关,表征了系统的混沌程度。
- 对角线熵(ENTR):对角线长度分布的Shannon熵:
E N T R = − ∑ l = l m i n M p ( l ) ln p ( l ) ENTR = -\sum_{l=l_{min}}^{M} p(l) \ln p(l) ENTR=−l=lmin∑Mp(l)lnp(l)
其中, p ( l ) = P ( l ) ∑ l = l m i n M P ( l ) p(l) = \frac{P(l)}{\sum_{l=l_{min}}^{M} P(l)} p(l)=∑l=lminMP(l)P(l) 是长度为 l l l 的对角线的概率分布。
对角线熵反映了系统动力学的复杂性和不确定性。
- 趋势(TREND):递归图中递归点密度随离主对角线距离变化的趋势:
T R E N D = ∑ k = 1 N ~ k ⋅ < R i , i + k > i − N ~ ( N ~ + 1 ) 4 ⋅ ∑ k = 1 N ~ < R i , i + k > i ∑ k = 1 N ~ k 2 − N ~ 2 ( N ~ + 1 ) 2 4 TREND = \frac{\sum_{k=1}^{\tilde{N}} k \cdot \left<\mathbf{R}_{i,i+k}\right>_i - \frac{\tilde{N}(\tilde{N}+1)}{4} \cdot \sum_{k=1}^{\tilde{N}} \left<\mathbf{R}_{i,i+k}\right>_i}{\sum_{k=1}^{\tilde{N}} k^2 - \frac{\tilde{N}^2(\tilde{N}+1)^2}{4}} TREND=∑k=1N~k2−4N~2(N~+1)2∑k=1N~k⋅⟨Ri,i+k⟩i−4N~(N~+1)⋅∑k=1N~⟨Ri,i+k⟩i
其中, < R i , i + k > i = 1 M − k ∑ i = 1 M − k R i , i + k ( ε ) \left<\mathbf{R}_{i,i+k}\right>_i = \frac{1}{M-k} \sum_{i=1}^{M-k} R_{i,i+k}(\varepsilon) ⟨Ri,i+k⟩i=M−k1∑i=1M−kRi,i+k(ε) 是距主对角线 k k k 个单位的对角线上递归点的密度, N ~ \tilde{N} N~ 是考虑的最大距离。趋势反映了系统的非平稳性程度。对于平稳系统, T R E N D ≈ 0 TREND \approx 0 TREND≈0;对于非平稳系统, T R E N D TREND TREND 的绝对值较大。
3.1.3 垂直结构分析
递归图中的垂直(或水平)结构对应于系统状态的持续性或间歇性,反映了系统的粘滞性。垂直线的分布可以通过直方图 P ( v ) P(v) P(v) 来表示,其中 P ( v ) P(v) P(v) 是长度为 v v v 的垂直线的数量。
定义 \textbf{定义} 定义:垂直线是递归图中垂直于主对角线的连续递归点,满足:
R i , j ( ε ) = 1 , R i , j − 1 ( ε ) = 0 , R i , j + v ( ε ) = 0 , and R i , j + k ( ε ) = 1 ∀ k ∈ { 0 , 1 , … , v − 1 } R_{i,j}(\varepsilon) = 1, \quad R_{i,j-1}(\varepsilon) = 0, \quad R_{i,j+v}(\varepsilon) = 0, \quad \text{and} \quad R_{i,j+k}(\varepsilon) = 1 \quad \forall k \in \{0, 1, \ldots, v-1\} Ri,j(ε)=1,Ri,j−1(ε)=0,Ri,j+v(ε)=0,andRi,j+k(ε)=1∀k∈{0,1,…,v−1}
基于垂直线分布,可以计算一系列RQA参数:
- 层状度(LAM):形成垂直线结构的递归点占总递归点的比例(通常只考虑长度不小于 v m i n v_{min} vmin 的垂直线, v m i n v_{min} vmin 通常取2):
L A M = ∑ v = v m i n M v ⋅ P ( v ) ∑ i , j = 1 M R i , j ( ε ) LAM = \frac{\sum_{v=v_{min}}^{M} v \cdot P(v)}{\sum_{i,j=1}^{M} R_{i,j}(\varepsilon)} LAM=∑i,j=1MRi,j(ε)∑v=vminMv⋅P(v)
层状度反映了系统状态变化的平缓程度,与系统的间歇性相关。
- 捕获时间(TT):垂直线的平均长度:
T T = ∑ v = v m i n M v ⋅ P ( v ) ∑ v = v m i n M P ( v ) TT = \frac{\sum_{v=v_{min}}^{M} v \cdot P(v)}{\sum_{v=v_{min}}^{M} P(v)} TT=∑v=vminMP(v)∑v=vminMv⋅P(v)
捕获时间反映了系统在特定状态下停留的平均时长,与系统的粘滞性相关。
- 最大垂直线长度(Vmax):最长垂直线的长度:
V m a x = max ( { v i } i = 1 N v ) V_{max} = \max(\{v_i\}_{i=1}^{N_v}) Vmax=max({vi}i=1Nv)
其中, { v i } i = 1 N v \{v_i\}_{i=1}^{N_v} {vi}i=1Nv 是所有垂直线的长度集合, N v N_v Nv 是垂直线的总数。
- 垂直线熵(VENTR):垂直线长度分布的Shannon熵:
V E N T R = − ∑ v = v m i n M p ( v ) ln p ( v ) VENTR = -\sum_{v=v_{min}}^{M} p(v) \ln p(v) VENTR=−v=vmin∑Mp(v)lnp(v)
其中, p ( v ) = P ( v ) ∑ v = v m i n M P ( v ) p(v) = \frac{P(v)}{\sum_{v=v_{min}}^{M} P(v)} p(v)=∑v=vminMP(v)P(v) 是长度为 v v v 的垂直线的概率分布。
垂直线熵反映了系统间歇性的复杂程度。
3.1.4 递归周期密度熵(RPDE)
递归周期密度熵是一种归一化的信息熵,用于量化系统中周期结构的规律性:
R P D E = H ( P ( l ) ) H m a x = − ∑ l = l m i n M p ( l ) ln p ( l ) ln ( L m a x − l m i n + 1 ) RPDE = \frac{H(P(l))}{H_{max}} = \frac{-\sum_{l=l_{min}}^{M} p(l) \ln p(l)}{\ln(L_{max} - l_{min} + 1)} RPDE=HmaxH(P(l))=ln(Lmax−lmin+1)−∑l=lminMp(l)lnp(l)
其中, H m a x = ln ( L m a x − l m i n + 1 ) H_{max} = \ln(L_{max} - l_{min} + 1) Hmax=ln(Lmax−lmin+1) 是均匀分布情况下的最大熵值。
R P D E RPDE RPDE 的值在0到1之间: R P D E = 0 RPDE = 0 RPDE=0 表示系统是完全周期的, R P D E = 1 RPDE = 1 RPDE=1 表示系统是完全随机的。
3.1.5 递归时间(RT)和递归周期(RP)
递归时间是系统状态首次递归所需的时间,定义为:
R T ( i ) = min { j > 0 : ∥ y i + j − y i ∥ < ε } RT(i) = \min\{j > 0 : \|\mathbf{y}_{i+j} - \mathbf{y}_i\| < \varepsilon\} RT(i)=min{j>0:∥yi+j−yi∥<ε}
递归时间的统计特性可以通过递归时间直方图 P ( R T ) P(RT) P(RT) 来分析,其中 P ( R T ) P(RT) P(RT) 是递归时间为 R T RT RT 的次数。
递归周期是递归时间的平均值:
R P = ⟨ R T ⟩ = 1 M ∑ i = 1 M R T ( i ) RP = \langle RT \rangle = \frac{1}{M} \sum_{i=1}^{M} RT(i) RP=⟨RT⟩=M1i=1∑MRT(i)
对于周期系统,递归周期等于系统的周期;对于混沌系统,递归周期与系统的相关时间有关。
3.1.6 递归图上的转移概率
递归图可以视为一个马尔可夫过程,定义转移概率矩阵 P \mathbf{P} P:
P i , j = R i , j ∑ k = 1 M R i , k P_{i,j} = \frac{R_{i,j}}{\sum_{k=1}^{M} R_{i,k}} Pi,j=∑k=1MRi,kRi,j
P i , j P_{i,j} Pi,j 表示系统从状态 i i i 转移到状态 j j j 的概率。通过分析转移概率矩阵的特征值和特征向量,可以获取系统动力学的更多信息。
3.2 RQA的多尺度扩展
3.2.1 多尺度递归图
多尺度递归图通过在不同时间尺度上构造递归图,揭示系统在不同尺度上的动力学特性。具体方法是先对原始时间序列进行粗粒化处理,然后在不同粗粒化尺度上构造递归图。粗粒化过程定义为:
s τ ( n ) ( i ) = 1 n ∑ j = ( i − 1 ) n + 1 i n s ( j ) s_{\tau}^{(n)}(i) = \frac{1}{n} \sum_{j=(i-1)n+1}^{in} s(j) sτ(n)(i)=n1j=(i−1)n+1∑ins(j)
其中, n n n 是粗粒化尺度, s τ ( n ) ( i ) s_{\tau}^{(n)}(i) sτ(n)(i) 是第 i i i 个粗粒化数据点。
多尺度递归图的数学定义为:
R i , j ( n ) ( ε ) = Θ ( ε − ∥ y i ( n ) − y j ( n ) ∥ ) R_{i,j}^{(n)}(\varepsilon) = \Theta(\varepsilon - \|\mathbf{y}_i^{(n)} - \mathbf{y}_j^{(n)}\|) Ri,j(n)(ε)=Θ(ε−∥yi(n)−yj(n)∥)
其中, y i ( n ) \mathbf{y}_i^{(n)} yi(n) 是在粗粒化尺度 n n n 上重构的相空间向量。
3.2.2 多尺度RQA
多尺度RQA将RQA参数在不同粗粒化尺度上进行计算,形成RQA参数随尺度变化的曲线,从而揭示系统在不同时间尺度上的动力学特性。例如,多尺度确定性定义为:
D E T ( n ) = ∑ l = l m i n M ( n ) l ⋅ P ( n ) ( l ) ∑ i , j = 1 M ( n ) R i , j ( n ) ( ε ) DET^{(n)} = \frac{\sum_{l=l_{min}}^{M^{(n)}} l \cdot P^{(n)}(l)}{\sum_{i,j=1}^{M^{(n)}} R_{i,j}^{(n)}(\varepsilon)} DET(n)=∑i,j=1M(n)Ri,j(n)(ε)∑l=lminM(n)l⋅P(n)(l)
其中, P ( n ) ( l ) P^{(n)}(l) P(n)(l) 是在粗粒化尺度 n n n 上构造的递归图中长度为 l l l 的对角线的数量, M ( n ) M^{(n)} M(n) 是在该尺度上重构相空间中的点数。
3.3 联合递归图和交叉递归图
3.3.1 联合递归图(JRP)
联合递归图(Joint Recurrence Plot, JRP)用于分析两个或多个子系统之间的同步行为,定义为各个子系统递归图的逐点乘积:
J R i , j ( 1 , 2 , . . . , d ) ( ε 1 , ε 2 , . . . , ε d ) = ∏ k = 1 d R i , j ( k ) ( ε k ) = R i , j ( 1 ) ( ε 1 ) ⋅ R i , j ( 2 ) ( ε 2 ) ⋅ . . . ⋅ R i , j ( d ) ( ε d ) JR_{i,j}^{(1,2,...,d)}(\varepsilon_1, \varepsilon_2, ..., \varepsilon_d) = \prod_{k=1}^{d} R_{i,j}^{(k)}(\varepsilon_k) = R_{i,j}^{(1)}(\varepsilon_1) \cdot R_{i,j}^{(2)}(\varepsilon_2) \cdot ... \cdot R_{i,j}^{(d)}(\varepsilon_d) JRi,j(1,2,...,d)(ε1,ε2,...,εd)=k=1∏dRi,j(k)(εk)=Ri,j(1)(ε1)⋅Ri,j(2)(ε2)⋅...⋅Ri,j(d)(εd)
其中, R i , j ( k ) ( ε k ) R_{i,j}^{(k)}(\varepsilon_k) Ri,j(k)(εk) 是第 k k k 个子系统的递归图, ε k \varepsilon_k εk 是对应的阈值。
联合递归图中的点表示所有子系统同时发生递归的时刻,反映了子系统之间的同步程度。
3.3.2 交叉递归图(CRP)
交叉递归图(Cross Recurrence Plot, CRP)用于分析两个不同系统之间的相似行为,定义为:
C R i , j ( 1 , 2 ) ( ε ) = Θ ( ε − ∥ y i ( 1 ) − y j ( 2 ) ∥ ) CR_{i,j}^{(1,2)}(\varepsilon) = \Theta(\varepsilon - \|\mathbf{y}_i^{(1)} - \mathbf{y}_j^{(2)}\|) CRi,j(1,2)(ε)=Θ(ε−∥yi(1)−yj(2)∥)
其中, y i ( 1 ) \mathbf{y}_i^{(1)} yi(1) 和 y j ( 2 ) \mathbf{y}_j^{(2)} yj(2) 分别是第一个和第二个系统在相空间中的状态向量。
交叉递归图中的点表示两个系统状态相似的时刻,反映了两个系统之间的相互关系。
3.3.3 交叉递归定量分析(CRQA)
交叉递归定量分析(Cross Recurrence Quantification Analysis, CRQA)是对交叉递归图进行的定量分析,计算方法与RQA类似,但基于交叉递归图而非递归图。
例如,交叉确定性(CDET)定义为:
C D E T = ∑ l = l m i n M l ⋅ P C R ( l ) ∑ i , j = 1 M C R i , j ( 1 , 2 ) ( ε ) CDET = \frac{\sum_{l=l_{min}}^{M} l \cdot P_{CR}(l)}{\sum_{i,j=1}^{M} CR_{i,j}^{(1,2)}(\varepsilon)} CDET=∑i,j=1MCRi,j(1,2)(ε)∑l=lminMl⋅PCR(l)
其中, P C R ( l ) P_{CR}(l) PCR(l) 是交叉递归图中长度为 l l l 的对角线的数量。
CRQA参数反映了两个系统之间的相似性、同步性和因果关系。
4. RQA的数学公式详解
4.1 递归图的几何解释
递归图可以通过几何学的角度来解释。设 M \mathcal{M} M 是一个 m m m 维流形,嵌入在 R m \mathbb{R}^m Rm 中, x ( t ) \mathbf{x}(t) x(t) 是相空间轨道在时间 t t t 的位置。定义 ε \varepsilon ε-球为:
B ε ( x ) = { y ∈ R m : ∥ y − x ∥ ≤ ε } B_{\varepsilon}(\mathbf{x}) = \{\mathbf{y} \in \mathbb{R}^m : \|\mathbf{y} - \mathbf{x}\| \leq \varepsilon\} Bε(x)={y∈Rm:∥y−x∥≤ε}
则递归点 R i , j = 1 R_{i,j} = 1 Ri,j=1 当且仅当 x ( j ) ∈ B ε ( x ( i ) ) \mathbf{x}(j) \in B_{\varepsilon}(\mathbf{x}(i)) x(j)∈Bε(x(i)),即时间 j j j 的状态落在以时间 i i i 的状态为中心的 ε \varepsilon ε-球内。递归图实际上是描述了相空间轨道与自身的交会情况。对于具有不同动力学特性的系统,递归图呈现出不同的几何模式:
- 周期轨道:递归图呈现出规则的对角线结构。
- 拟周期轨道:递归图呈现出棋盘状的结构。
- 混沌轨道:递归图呈现出复杂但有一定结构的图案。
- 随机过程:递归图呈现出无规律的噪声状分布。
4.2 递归图的线性代数表示
递归图可以用矩阵形式表示,设 Y \mathbf{Y} Y 是相空间轨道矩阵,每行对应一个重构的相空间向量:
Y = [ y 1 T y 2 T ⋮ y M T ] \mathbf{Y} = \begin{bmatrix} \mathbf{y}_1^T \\ \mathbf{y}_2^T \\ \vdots \\ \mathbf{y}_M^T \end{bmatrix} Y= y1Ty2T⋮yMT
距离矩阵 D \mathbf{D} D 的元素为:
D i , j = ∥ y i − y j ∥ D_{i,j} = \|\mathbf{y}_i - \mathbf{y}_j\| Di,j=∥yi−yj∥
递归矩阵 R \mathbf{R} R 可以表示为:
R = Θ ( ε ⋅ 1 − D ) \mathbf{R} = \Theta(\varepsilon \cdot \mathbf{1} - \mathbf{D}) R=Θ(ε⋅1−D)
其中, 1 \mathbf{1} 1 是全1矩阵,运算符 Θ \Theta Θ 应用于矩阵的每个元素。
4.3 RQA参数的矩阵表示
RQA参数可以用矩阵表示形式表达,这样有助于理解其几何和代数意义。
4.3.1 递归率(RR)
递归率可以表示为递归矩阵 R \mathbf{R} R 的元素平均值:
R R = 1 M 2 ∑ i , j = 1 M R i , j = 1 M 2 ∥ R ∥ F 2 RR = \frac{1}{M^2} \sum_{i,j=1}^{M} R_{i,j} = \frac{1}{M^2} \|\mathbf{R}\|_F^2 RR=M21i,j=1∑MRi,j=M21∥R∥F2
其中, ∥ R ∥ F \|\mathbf{R}\|_F ∥R∥F 是矩阵 R \mathbf{R} R 的Frobenius范数。
4.3.2 确定性(DET)
定义对角线指示矩阵 D L \mathbf{DL} DL,其元素为:
D L i , j = { 1 , if R i , j is part of a diagonal line of length ≥ l m i n 0 , otherwise DL_{i,j} = \begin{cases} 1, & \text{if } R_{i,j} \text{ is part of a diagonal line of length } \geq l_{min} \\ 0, & \text{otherwise} \end{cases} DLi,j={1,0,if Ri,j is part of a diagonal line of length ≥lminotherwise
则确定性可以表示为:
D E T = ∑ i , j = 1 M D L i , j ⋅ R i , j ∑ i , j = 1 M R i , j = ⟨ D L , R ⟩ F ∥ R ∥ F 2 DET = \frac{\sum_{i,j=1}^{M} DL_{i,j} \cdot R_{i,j}}{\sum_{i,j=1}^{M} R_{i,j}} = \frac{\langle \mathbf{DL}, \mathbf{R} \rangle_F}{\|\mathbf{R}\|_F^2} DET=∑i,j=1MRi,j∑i,j=1MDLi,j⋅Ri,j=∥R∥F2⟨DL,R⟩F
其中, ⟨ A , B ⟩ F = ∑ i , j A i , j B i , j \langle \mathbf{A}, \mathbf{B} \rangle_F = \sum_{i,j} A_{i,j} B_{i,j} ⟨A,B⟩F=∑i,jAi,jBi,j 是矩阵 A \mathbf{A} A 和 B \mathbf{B} B 的Frobenius内积。类似地,可以定义垂直线指示矩阵 V L \mathbf{VL} VL 和其他结构的指示矩阵,从而用矩阵表示形式表达所有RQA参数。
4.4 RQA的信息论解释
从信息论的角度,RQA参数可以解释为系统状态序列的信息特性。
4.4.1 条件熵和互信息
定义条件熵 H ( X j ∣ X i ) H(X_j|X_i) H(Xj∣Xi) 为给定时间 i i i 的系统状态 X i X_i Xi 条件下,时间 j j j 的系统状态 X j X_j Xj 的不确定性:
H ( X j ∣ X i ) = − ∑ x i , x j p ( x i , x j ) log p ( x i , x j ) p ( x i ) H(X_j|X_i) = -\sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)} H(Xj∣Xi)=−xi,xj∑p(xi,xj)logp(xi)p(xi,xj)
互信息 I ( X i ; X j ) I(X_i; X_j) I(Xi;Xj) 为 X i X_i Xi 和 X j X_j Xj 共享的信息量:
I ( X i ; X j ) = H ( X j ) − H ( X j ∣ X i ) = ∑ x i , x j p ( x i , x j ) log p ( x i , x j ) p ( x i ) p ( x j ) I(X_i; X_j) = H(X_j) - H(X_j|X_i) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)} I(Xi;Xj)=H(Xj)−H(Xj∣Xi)=xi,xj∑p(xi,xj)logp(xi)p(xj)p(xi,xj)
时间序列的递归率和条件熵、互信息存在关系:
R R ≈ exp ( − H ( X j ∣ X i ) ) = exp ( I ( X i ; X j ) − H ( X j ) ) RR \approx \exp(-H(X_j|X_i)) = \exp(I(X_i; X_j) - H(X_j)) RR≈exp(−H(Xj∣Xi))=exp(I(Xi;Xj)−H(Xj))
4.4.2 熵分析
对角线长度的熵 E N T R ENTR ENTR 可以解释为系统预测难度的度量:
E N T R = − ∑ l = l m i n M p ( l ) log p ( l ) = H ( L ) ENTR = -\sum_{l=l_{min}}^{M} p(l) \log p(l) = H(L) ENTR=−l=lmin∑Mp(l)logp(l)=H(L)
其中, H ( L ) H(L) H(L) 是对角线长度 L L L 的熵。 E N T R ENTR ENTR 值越大,系统的预测难度越大。类似地,垂直线长度的熵 V E N T R VENTR VENTR 可以解释为系统间歇性复杂度的度量:
V E N T R = − ∑ v = v m i n M p ( v ) log p ( v ) = H ( V ) VENTR = -\sum_{v=v_{min}}^{M} p(v) \log p(v) = H(V) VENTR=−v=vmin∑Mp(v)logp(v)=H(V)
其中, H ( V ) H(V) H(V) 是垂直线长度 V V V 的熵。 V E N T R VENTR VENTR 值越大,系统的间歇性行为越复杂。
4.5 泛函分析视角下的递归图
从泛函分析的角度,递归图可以视为从递归算子的核函数衍生而来的。定义递归算子 R ε : L 2 ( M ) → L 2 ( M ) \mathcal{R}_{\varepsilon}: L^2(\mathcal{M}) \to L^2(\mathcal{M}) Rε:L2(M)→L2(M) 为:
( R ε f ) ( x ) = ∫ M Θ ( ε − ∥ x − y ∥ ) f ( y ) d μ ( y ) (\mathcal{R}_{\varepsilon} f)(\mathbf{x}) = \int_{\mathcal{M}} \Theta(\varepsilon - \|\mathbf{x} - \mathbf{y}\|) f(\mathbf{y}) d\mu(\mathbf{y}) (Rεf)(x)=∫MΘ(ε−∥x−y∥)f(y)dμ(y)
其中, μ \mu μ 是 M \mathcal{M} M 上的不变测度, f ∈ L 2 ( M ) f \in L^2(\mathcal{M}) f∈L2(M) 是定义在相空间上的平方可积函数。
递归算子的核函数是:
K ε ( x , y ) = Θ ( ε − ∥ x − y ∥ ) K_{\varepsilon}(\mathbf{x}, \mathbf{y}) = \Theta(\varepsilon - \|\mathbf{x} - \mathbf{y}\|) Kε(x,y)=Θ(ε−∥x−y∥)
递归矩阵实际上是核函数在相空间轨道上的离散采样:
R i , j = K ε ( x ( i ) , x ( j ) ) R_{i,j} = K_{\varepsilon}(\mathbf{x}(i), \mathbf{x}(j)) Ri,j=Kε(x(i),x(j))
递归算子的谱特性与系统的动力学特性密切相关。例如,递归算子的特征值与系统的转移概率矩阵的特征值有关;递归算子的特征函数与系统的不变密度有关。