【五校联考1day2】JZOJ2020年8月12日提高组T1 对你的爱深不见底
题目
Description
出乎意料的是,幸运E 的小R 居然赢了那个游戏。现在欣喜万分的小R 想要写一张明信片给小Y,但是因为小R 非常羞涩,所以他打算采用一些比较神奇的方式来表达。
他定义了一些字符串,s1 = a,s2 = b,si =s_i-1 + s_i-2 (i >=3)。同时他定义了一个字符串s 的权值为一个最大的i <|s|满足s 长度为i 的前缀等于长度为i 的后缀。比如字符串aba 的权值就是1,abab 的权值就是2,aaaa 的权值就是3。
现在小R 在明信片上给出了两个数n 和m,他想要告诉小Y 的信息是字符串sn 的前m个字符组成的字符串的权值。你可以帮小Y 计算一下吗?
Input
第一行输入一个正整数T 表示数据组数。
对于每组数据,第一行是两个整数n;m。保证1<= m <=|sn|
Output
对于每组数据,输出一个整数表示答案。答案可能很大,你只需要输出模258280327 后的答案。
Sample Input
2
4 3
5 5
Sample Output
1
2
Data Constraint
对于30% 的数据,n <= 20
对于60% 的数据,n <= 60
对于100% 的数据,n <= 10^3,1 <= T <= 100
题解
题意
定义一些字符串,
s
1
=
a
s_1=a
s1=a,
s
2
=
b
s_2=b
s2=b,
s
i
=
s
i
−
1
+
s
i
−
2
s_i=s_{i-1}+s_{i-2}
si=si−1+si−2(例如
s
3
s_3
s3是
b
a
ba
ba)
问
s
n
s_n
sn的前
m
m
m个字符的权值
权值定义:对于一个字符串,前缀和后缀的相同部分的长度
分析
通过打表发现规律
找到一个最小
n
n
n满足
∣
s
[
n
]
∣
>
m
+
1
|s[n]|>m+1
∣s[n]∣>m+1
那么答案就是
m
−
∣
s
[
n
−
2
]
∣
m-|s[n-2]|
m−∣s[n−2]∣
那么直接求解即可,用高精度
Code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mod 258280327
using namespace std;
struct gjd
{
int a[505],len;
}f[10005],Ans;
int n,k,i,t,l,r,mid,ans,dr[10005];
char ch;
bool judge(gjd &x,gjd &y)
{
int i;
if (x.len<y.len) return true;
if (x.len>y.len) return false;
for (i=x.len;i;i--)
{
if (x.a[i]<y.a[i]) return true;
if (x.a[i]>y.a[i]) return false;
}
return false;
}
void fibonacci(gjd &a,gjd &b,gjd &c)
{
int i;
for (i=1;i<=c.len;i++)
c.a[i]=0;
c.len=0;
for (i=1;i<=a.len||i<=b.len;i++)
{
c.a[i]+=a.a[i]+b.a[i];
c.a[i+1]+=c.a[i]/10;
c.a[i]%=10;
}
c.len=max(a.len,b.len);
while (c.a[c.len+1])
{
c.len++;
c.a[c.len+1]=c.a[c.len]/10;
c.a[c.len]%=10;
}
}
int main()
{
freopen("test.in","r",stdin);
freopen("test.out","w",stdout);
f[1].a[1]=1;
f[1].len=1;
f[2]=f[1];
for (i=3;i<=1001;i++)
fibonacci(f[i-2],f[i-1],f[i]);
scanf("%d",&t);
while (t--)
{
scanf("%d",&n);
Ans.len=0;
memset(Ans.a,0,sizeof(Ans.a));
ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9')
{
Ans.len++;
dr[Ans.len]=ch-'0';
ch=getchar();
}
for (i=1;i<=Ans.len;i++)
Ans.a[Ans.len-i+1]=dr[i];
Ans.a[1]++;
for (i=1;i<=Ans.len;i++)
{
Ans.a[i+1]+=Ans.a[i]/10;
Ans.a[i]%=10;
}
if (Ans.a[Ans.len+1]) Ans.len++;
l=1;
r=1001;
k=0;
while (l<=r)
{
mid=(l+r)>>1;
if (judge(Ans,f[mid]))
{
k=mid;
r=mid-1;
}
else l=mid+1;
}
k-=2;
Ans.a[1]--;
for (i=1;i<=f[k].len;i++)
{
Ans.a[i]-=f[k].a[i];
if (Ans.a[i]<0)
{
Ans.a[i]+=10;
Ans.a[i+1]--;
}
}
while (!Ans.a[Ans.len]&&Ans.len>1) Ans.len--;
ans=0;
for (i=Ans.len;i;i--)
ans=((long long)ans*10+Ans.a[i])%mod;
printf("%d\n",ans);
}
return 0;
}