【GDKOI2014】JZOJ2020年8月13日提高组T2 石油储备计划

【GDKOI2014】JZOJ2020年8月13日提高组T2 石油储备计划

题目

Description

在这里插入图片描述

Input

在这里插入图片描述

Output

对于每组数据,输出一个整数,表示达到“平衡”状态所需的最小代价。

Sample Input

2
3
6 1 5
1 2 1
2 3 2
5
4 5 4 3 2
1 3 1
1 2 2
2 4 3
2 5 4

Sample Output

4
4

Data Constraint

对于20%的数据,N<=15
对于100%的数据,T<=10,N<=100,0<=si<=10000,1<=X,Y<=N,1<=Z<=10000。

Hint

对于第一组数据,从城市1到城市2运输2桶石油,代价为 1 ∗ 2 = 2 1*2=2 12=2;从城市3往城市2运输1桶石油,代价为 2 ∗ 1 = 2 2*1=2 21=2。此时三个城市储备量都为4桶,该状态的平衡度为0。
对于第二组数据,从城市2到城市5运输1桶石油,代价为 1 ∗ 4 = 4 1*4=4 14=4;此时五个城市储备量为(4,4,4,3,3),该状态的非平衡度为1.2,是能达到的所有状态的最小值。

题解

题意

给出一棵树,有边权
定义一个非平衡度(如题)
问如何运输使得非平衡度最小,且代价最低

分析

很容易发现非平衡度最小有两种情况

  1. s u m % n = 0 sum\%n=0 sum%n=0,答案为 s u m n \dfrac{sum}{n} nsum
  2. 若不为0,答案为 ⌊ s u m n ⌋ \left \lfloor\dfrac{sum}n{}\right \rfloor nsum ⌊ s u m n ⌋ + 1 \left \lfloor\dfrac{sum}n{}\right \rfloor+1 nsum+1

那么容易想到最小费用最大流

  • 所有点往源点连一条流量为油桶数量,费用为0的边
  • 所有点往汇点连一条流量为 ⌊ s u m n ⌋ \left \lfloor\dfrac{sum}n{}\right \rfloor nsum,费用为0的边
  • 对于读入的点,连流量正无穷,费用读入的边(注意是双向,加上反向弧总共4条)

然后跑一遍最小费用最大流
随后把所有连向汇点的边流量加一
再跑一遍
两次答案之和即为答案

Code

#include<bits/stdc++.h>
#define rg register
#define inf 999999999999
using namespace std;
struct node
{
    long long to,next,val,flow;
}a[5005];
long long t,n,x,y,z,S,T,ans,ans1,tot,sum,head[5005],bj[5005],dis[5005],sy[5005];
inline void add(long long x,long long y,long long z,long long v)
{ 
    a[tot].to=y;
    a[tot].flow=z;
    a[tot].val=v;
    a[tot].next=head[x];
    head[x]=tot;
    ++tot;
}
inline long long OK()
{
    long long plus=inf;
    for (rg long long i=0;i<=n+2;++i)
        if (bj[i])
            for (rg long long j=head[i];j!=-1;j=a[j].next)
                if (!bj[a[j].to]&&a[j].flow) plus=min(plus,dis[a[j].to]+a[j].val-dis[i]);
    if (plus==inf) return 0;
    for (rg long long i=0;i<=n+2;++i)
    {
        if (bj[i])
        {
            bj[i]=0;
            dis[i]+=plus;
        }
    }
    return 1;
}
inline long long wwl(long long now,long long ss)
{
    if (now==T) 
    {
        ans1+=dis[S]*ss;
        return ss;
    }
    bj[now]=1;
    long long u,x;
    for (rg long long i=head[now];i!=-1;i=a[i].next)
    {
        u=a[i].to;
        if (!bj[u]&&dis[u]+a[i].val==dis[now]&&a[i].flow)
        {
            x=wwl(u,min(ss,a[i].flow));
            if (x)
            {
                a[i].flow-=x;
                a[i^1].flow+=x;
                return x;
            }
        }
    }
    return 0;
}
inline void ffl()
{
    long long q;
    while (OK())
    {
        q=wwl(S,inf);
        while (q)
        {
            memset(bj,0,sizeof(bj));
            q=wwl(S,inf);
        }
    }
}
int main()
{
    freopen("test.in","r",stdin);
    freopen("test.out","w",stdout);
    scanf("%lld",&t);
    while (t--)
    {
        memset(head,-1,sizeof(head));
        memset(a,0,sizeof(a));
        memset(dis,0,sizeof(dis));
        memset(bj,0,sizeof(bj));
        scanf("%lld",&n);
        S=n+1;
        T=n+2;
        ans=sum=ans1=0;
        tot=0;
        for (rg long long i=1;i<=n;++i)
        {
            scanf("%lld",&x);
            add(S,i,x,0);
            add(i,S,0,0);
            sum+=x;
        }
        for (rg long long i=1;i<n;++i)
        {
            scanf("%lld%lld%lld",&x,&y,&z);
            add(x,y,inf,z);
            add(y,x,0,-z);
            add(y,x,inf,z);
            add(x,y,0,-z);
        }
        sum/=n;
        for (rg long long i=1;i<=n;++i)
        {
            add(i,T,sum,0);
            add(T,i,0,0);
        }
        bj[S]=1;
        ffl();
        for (rg long long i=2;i<=tot;++i)
            if (a[i].to==T)
                a[i].flow++;
        bj[S]=1;
        ffl();
        printf("%lld\n",ans1);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值