【NOI Online 2022】普及组题解

T1

暴力记录每一列的 1 的个数,在判断是否超过一半,统计答案。

#include<cstdio>
#define N 1005
using namespace std;
int n,m,x,ans,a[N];
int main()
{
	freopen("kingdom.in","r",stdin);
	freopen("kingdom.out","w",stdout);
	scanf("%d%d",&n,&m);
	for (int i=1;i<=m;++i)
		for (int j=1;j<=n;++j)
			scanf("%d",&x),a[j]+=x;
	for (int i=1;i<=n;++i)
	{
		scanf("%d",&x);
		if (2*a[i]<m) a[i]=0;
		else a[i]=1;
		if (a[i]==x) ++ans;
	}
	printf("%d\n",ans);
	return 0;
}

T2

如果 z ∤    x z\not |\ \ x z  x,输出 -1
y = a × gcd ⁡ ( x , y ) y=a \times \gcd(x,y) y=a×gcd(x,y),则 a × ( gcd ⁡ ( x , y ) ) 2 = z x a\times (\gcd(x,y))^2=\frac{z}{x} a×(gcd(x,y))2=xz。因此 z x ∣ ( gcd ⁡ ( x , y ) ) 2 \frac{z}{x} | (\gcd(x,y))^2 xz(gcd(x,y))2

又有 x ∣ gcd ⁡ ( x , y ) x | \gcd(x,y) xgcd(x,y),所以 x 2 ∣ ( gcd ⁡ ( x , y ) ) 2 x^2 | (\gcd(x,y))^2 x2(gcd(x,y))2

要最小化 y y y,就要最大化 gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y),即最大化 gcd ⁡ ( x , y ) 2 \gcd(x,y)^2 gcd(x,y)2。而 gcd ⁡ ( x , y ) 2 \gcd(x,y)^2 gcd(x,y)2 又同时是 x 2 x^2 x2 z x \frac{z}{x} xz 的因数, 所以可得, gcd ⁡ ( x , y ) 2 = gcd ⁡ ( x 2 , z x ) \gcd(x,y)^2=\gcd(x^2,\frac{z}{x}) gcd(x,y)2=gcd(x2,xz)

接下来只需要开方求出 gcd ⁡ \gcd gcd,随后求出 y y y 并判断是否符合要求。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 405
#define mod 1000000007
#define ll long long
using namespace std;
int T,n,m,cnt[N];
ll ans,f[N][N][N];
char s[N],t[N];
int main()
{
	freopen("string.in","r",stdin);
	freopen("string.out","w",stdout);
	scanf("%d",&T);
	while (T--)
	{
		memset(cnt,0,sizeof(cnt));
		scanf("%d%d%s%s",&n,&m,s+1,t+1);
		for (int i=1;i<=n;++i)
		{
			cnt[i]=cnt[i-1];	
			if (s[i]=='-') cnt[i]++;
		} 
		memset(f,0,sizeof(f));
		f[0][0][0]=1;
		for (int i=1;i<=n;++i)
			for (int j=0;j<=min(i,m);++j)
				for(int x=0;x<=i;++x)
				{
					int y=i-j-x-2*cnt[i];
					if (y<0) break;
					if (s[i]=='-')
					{
						f[i][j][x]=(f[i][j][x]+f[i-1][j][x+1])%mod;
						f[i][j][x]=(f[i][j][x]+f[i-1][j][x])%mod;
					}
					else
					{
						f[i][j][x]=(f[i][j][x]+f[i-1][j][x])%mod;
						if (!j&&!y) f[i][j][x]=(f[i][j][x]+f[i-1][j][x-1])%mod;
						if (s[i]==t[j]&&!y) f[i][j][x]=(f[i][j][x]+f[i-1][j-1][x])%mod;	
					}
				}
		ans=0;
		for (int x=0;x<=n;++x)
		{
			int y=n-m-x-2*cnt[n];
			ans=max(ans,f[n][m][x]);
		}
		printf("%lld\n",ans);
	} 
	return 0;
}

T3

主要到每个字符最后要么保留,要么从左边删,要么右边删。因此可以考虑使用 d p dp dp

f i , j , x , y f_{i,j,x,y} fi,j,x,y 表示 S S S 中到了第 i i i 个字符, T T T 中匹配到第 j j j 个字符,左边还要删除 x x x 个,右边 y y y 个。

考虑转移。如果当前这个位置是 -,则从左删转移和从右删转移过来。

否则,先考虑右边多一个要删的(因为加是加在右边)。

然后考虑能不能放左边,前提是当前没有已匹配的并且右边没有要删的。

最后如果可以匹配,再加到匹配中,前提是右边没有要删的。

时空复杂度都是 O ( n 4 ) \mathcal O(n^4) O(n4),无法通过此题。

注意到 x x x y y y i i i j j j 之间是有一定关系的,令 c n t i cnt_i cnti 表示 i i i 之前 - 的个数,则有 i − j − x − y = 2 × c n t i i-j-x-y=2\times cnt_i ijxy=2×cnti

解释一下。 j j j 是已匹配的, x x x y y y 分别表示左边和右边还没删除的, i i i 表示当前是第几个字符,那么 i − j − x − y i-j-x-y ijxy 就表示已经删除的字符个数加上 - 的个数。而一个 - 就对应着一个被删除的字符,所以 i − j − x − y = 2 × c n t i i-j-x-y=2\times cnt_i ijxy=2×cnti

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 405
#define mod 1000000007
#define ll long long
using namespace std;
int T,n,m,cnt[N];
ll ans,f[N][N][N];
char s[N],t[N];
int main()
{
	scanf("%d",&T);
	while (T--)
	{
		memset(cnt,0,sizeof(cnt));
		scanf("%d%d%s%s",&n,&m,s+1,t+1);
		for (int i=1;i<=n;++i)
		{
			cnt[i]=cnt[i-1];	
			if (s[i]=='-') cnt[i]++;
		} 
		memset(f,0,sizeof(f));
		f[0][0][0]=1;
		for (int i=1;i<=n;++i)
			for (int j=0;j<=min(i,m);++j)
				for(int x=0;x<=i;++x)
				{
					int y=i-j-x-2*cnt[i];
					if (y<0) break;
					if (s[i]=='-')
					{
						f[i][j][x]=(f[i][j][x]+f[i-1][j][x+1])%mod;
						f[i][j][x]=(f[i][j][x]+f[i-1][j][x])%mod;
					}
					else
					{
						f[i][j][x]=(f[i][j][x]+f[i-1][j][x])%mod;
						if (!j&&!y) f[i][j][x]=(f[i][j][x]+f[i-1][j][x-1])%mod;
						if (s[i]==t[j]&&!y) f[i][j][x]=(f[i][j][x]+f[i-1][j-1][x])%mod;	
					}
				}
		ans=0;
		for (int x=0;x<=n;++x)
		{
			int y=n-m-x-2*cnt[n];
			ans=max(ans,f[n][m][x]);
		}
		printf("%lld\n",ans);
	} 
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值