这题。。。。不想评价了
题意:给一棵树,两个操作,每次将一个点和他的子辈,孙辈节点的值+c 或询问 f(u),
题解:
对于每次加值的操作,我们可以分别算出对这些点加了c后,对于其他点的f值的贡献,可以看出每次修改一个点u,他会影响的只有u和u的孙辈、子辈、祖先节点,一共有4种贡献
官方题解给了公式,其实还是比较好懂的
然后对于4种贡献,我们分开维护
1:对于每个点,(size(v)+1)是固定的,所以按照bfs序建一个线段树,记录每个点孙辈节点的bfs序的两端,每次用线段树区间加x,统计答案时乘上(size(v)+1)
2:类似1,因为(2+size(v)*sons1(v))固定,仿照第一种情况,建一棵线段树记录每个点子辈节点bfs序的两端,每次也是区间+x
3:开个数组维护单点,每次修改u,直接加x,统计答案时将累计的乘上后面的那一串东西
第四种整个式子没有不变量,我们不可能往上逐个修改u的祖先,所以这里要用到树链剖分。
首先定义v为u的一个祖先,w为链 [ u,v )上深度最浅的点,son为v的重孩子
我们对u到根的路径上所有点在线段树上+x*(sons2(u)+1),然后每次询问一个点v答案的时候,在答案里加上这颗线段树上的值×(size(v)-size(son)) 但是这样做有可能错
这种情况对于v和w都在同一重链上的情况是没问题的,但如果v→w是v的一条轻边,那么统计答案的时候就会少乘 ( size(son) - size(w) ) , 所以每次跳到一条轻边的时候,在这条轻边的父亲f的答案里加上
x*(sons2(u)+1)*(size(v)-size(w)) ,这样可以补上线段树里多减的
然后........就没了
我觉得打起来感觉不太好............
code:
#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<ctime>
#include<ctime>
#include<vector>
#include<string>
#include<bitset>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
inline void read( ll &x )
{
char c; int f=1;
while( !( (c=getchar())>='0' && c<='9' ) )
if( c == '-' ) f = -1;
x = c-'0';
while( (c=getchar())>='0' && c<='9' )
(x*=10) += c-'0';
x *= f;
}
const int maxn = 310000;
const ll Mod = 1ll<<32;
queue< int >Q;
struct node
{
int y,next;
}a[maxn<<1]; int bnum,z,len,first[maxn];
int siz[maxn],son[maxn],fa[maxn],top[maxn],w[maxn];
int son1[maxn],son2[maxn],bid[maxn];
int sl1[maxn],sr1[maxn],sl2[maxn],sr2[maxn];
ll tr[5][maxn<<2],tr3[maxn];
ll a1[maxn],a2[maxn],a3[maxn],a4[maxn];
ll s[maxn],sum[maxn];
int n,m;
ll M( ll x )
{
if( x < Mod && x > -Mod ) return x;
return x-Mod*(x/Mod);
}
void insert( int x,int y )
{
len++;
a[len].y = y;
a[len].next =first[x]; first[x] = len;
}
void dfs( int x )
{
s[x] = sum[x];
siz[x] = 1; son[x] = 0; son1[x] = son2[x] = 0;
a3[x] = 2;
for( int k=first[x];k;k=a[k].next )
{
int y = a[k].y;
if( y != fa[x] )
{
son1[x] ++;
son2[x] ++;
fa[y]= x;
dfs( y );
s[x] = M( s[x] - siz[y]*sum[y] );
a3[x] -= (siz[y]*son1[y]);
sum[x] = M(sum[x]+sum[y]);
son2[x] += son1[y];
siz[x] += siz[y];
if( siz[son[x]] < siz[y] ) son[x] = y;
}
}
s[x] = M( s[x]+siz[x]*sum[x] );
a1[x] = siz[x]+1;
a2[x] = M(son1[x]*siz[x]+2);
a3[x] = M(a3[x] + son2[x]*siz[x]) ;
a4[x] = siz[x]-siz[son[x]];
}
void dfs2( int x )
{
sl1[x] = sl2[x] = n+1;
sr1[x] = sr2[x] = 0;
for( int k=first[x];k;k=a[k].next )
{
int y = a[k].y;
if( y != fa[x] )
{
dfs2( y );
sl1[x] = min( sl1[x],bid[y] );
sl2[x] = min( sl2[x],sl1[y] );
sr1[x] = max( sr1[x],bid[y] );
sr2[x] = max( sr2[x],sr1[y] );
}
}
}
void build_tree( int x,int tp )
{
top[x] = tp; w[x] = ++z;
if( son[x] ) build_tree( son[x],tp );
for( int k=first[x];k;k=a[k].next )
{
int y= a[k].y;
if( y != son[x] && y != fa[x] )
build_tree( y,y );
}
}
void bfs( )
{
bnum = 0; Q.push( 1 );
while( !Q.empty() )
{
int x = Q.front(); Q.pop();
bid[x] = ++bnum;
for( int k=first[x];k;k=a[k].next )
{
int y = a[k].y;
if( y != fa[x]) Q.push( y );
}
}
}
void update( int k,int x,int l,int r,int lx,int rx,ll ac )
{
if( lx <= l && r <= rx )
{
tr[k][x] = M( tr[k][x] + ac );
return ;
}
tr[k][x] = M( tr[k][x] );
int mid = (l+r)>>1, lc = x<<1, rc = lc|1;
if( rx <= mid ) update( k,lc,l,mid,lx,rx,ac );
else if( lx > mid ) update( k,rc,mid+1,r,lx,rx,ac );
else
{
update( k,lc,l,mid,lx,mid,ac );
update( k,rc,mid+1,r,mid+1,rx,ac );
}
}
void add( int x,ll ac )
{
while( top[x] != 1 )
{
int f1 = top[x];
update( 4,1,1,z,w[f1],w[x],ac );
x = fa[f1];
s[x] = M(s[x] + ac*(siz[son[x]]-siz[f1]));
}
update( 4,1,1,z,w[1],w[x],ac );
}
ll Query( int k,int x,int l,int r,int loc,ll ret )
{
if( l == r ) return M(ret+tr[k][x]);
ret = M( ret + tr[k][x] );
int mid = ( l+r )>>1, lc = x<<1, rc= lc|1;
if( loc <= mid ) return Query( k,lc,l,mid,loc,ret );
else return Query( k,rc,mid+1,r,loc,ret );
}
int main()
{
ll x,y;
while( scanf("%d%d",&n,&m) != EOF )
{
len = 0;
bnum = z = 0;
for( int i=1;i<=n;i++ ) tr3[i] = first[i] = 0;
for( int i=1;i<=n<<2;i++ ) tr[1][i] = tr[2][i] = tr[4][i] = 0;
for( int i=2;i<=n;i++ )
{
read( x );
insert( x,i );
insert( i,x );
}
for( int i=1;i<=n;i++ ) read( sum[i] );
dfs( 1 );
build_tree( 1,1 );
bfs( );
dfs2( 1 );
while( m-- )
{
read( y );
if( y == 1 )
{
read( x ); read( y );
if( sl2[x] != n+1 ) update( 1,1,1,bnum,sl2[x],sr2[x],y );
if( sl1[x] != n+1 ) update( 2,1,1,bnum,sl1[x],sr1[x],y );
tr3[x] = M( tr3[x] + y );
if( x != 1 )
{
int f1 = fa[x], ac = y*(son2[x]+1) ;
s[f1] = M(s[f1] + ac*(siz[son[f1]]-siz[x]));
add( fa[x],ac );
}
}
else
{
read( x );
ll ret = s[x];
ret = M( ret + a1[x]*Query( 1,1,1,bnum,bid[x],0ll ) );
ret = M( ret + a2[x]*Query( 2,1,1,bnum,bid[x],0ll ) );
ret = M( ret + a3[x]*tr3[x] );
ret = M( ret + a4[x]*Query( 4,1,1,z,w[x],0ll ) );
printf( "%I64d\n",M(ret+Mod) );
}
}
}
return 0;
}