分层图

之前有分层图的题没做,比赛遇到挂了,补一补
这东西貌似迪杰斯特拉跑的比SPFA快很多
例:BZOJ1579
分成0~k层,表示用了多少次更新,每条边分一条连向下一层的边权值为0,然后向这两层转移


code:

#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
using namespace std;

const int maxn = 11000;
const int maxm = 510000;
const int maxk = 25;
void down(int &x,int y){if(y<x)x=y;}
struct edge
{
    int y,c,nex;
    edge(){}
    edge(int a1,int a2,int a3){y=a1;c=a2;nex=a3;}
}a[maxm<<1];int len,fir[maxn];
void ins(int x,int y,int c){a[++len]=edge(y,c,fir[x]);fir[x]=len;}
int d[maxk][maxn];
int n,m,K,st,ed;

struct node
{
    int x,k,c;
    node(){}
    node(int a1,int a2,int a3){x=a1;k=a2;c=a3;}
};
priority_queue<node>q;
bool operator <(node x,node y){return x.c>y.c;}
void solve()
{
    memset(d,63,sizeof d);d[0][st]=0;
    q.push(node(st,0,0));
    while(!q.empty())
    {
        node tmp=q.top();q.pop();
        int x=tmp.x;
        if(tmp.c>d[tmp.k][x])continue;
        for(int k=fir[x];k;k=a[k].nex)
        {
            int y=a[k].y;
            if(tmp.k<K&&d[tmp.k+1][y]>tmp.c)
            {
                d[tmp.k+1][y]=tmp.c;
                q.push(node(y,tmp.k+1,tmp.c));
            }
            if(d[tmp.k][y]>tmp.c+a[k].c)
            {
                d[tmp.k][y]=tmp.c+a[k].c;
                q.push(node(y,tmp.k,tmp.c+a[k].c));
            }
        }
    }
}

int main()
{
    scanf("%d%d%d",&n,&m,&K);
    for(int i=1;i<=m;i++)
    {
        int x,y,c;scanf("%d%d%d",&x,&y,&c);
        ins(x,y,c);ins(y,x,c);
    }
    st=1;ed=n;
    solve();
    int ret=INT_MAX;
    for(int i=1;i<=K;i++)down(ret,d[K][ed]);
    printf("%d\n",ret);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值