BZOJ2440: [中山市选2011]完全平方数

42 篇文章 0 订阅

求第k个非完全平方数

先二分一下,问题变成1~x有多少个非完全平方数,知道平方数的集合,可以容斥一下
(为了叙述方便,下文一个数可代表其平方的倍数的集合)
被一个集合包含的只有质数,被两个集合包含的是质因数个数为2的数……而且所有考虑的数都不含平方因子,可以发现和 μ 一样,被考虑进去的数的μ值就是他的系数
所以预处理一下 μ ,每次询问O(n)



code:

#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;

const int maxn = 1010000;
int mou[maxn],p[maxn],pri;
bool v[maxn];

ll count(ll x)
{
    ll ret=0;
    ll q=sqrt(x);
    for(ll i=1;i<=q;i++)
    {
        if(mou[i]) ret += mou[i]*(x/(i*i));
    }
    return ret;
}
ll up=1644934081;
ll find_(ll l,ll r,ll x)
{
    while(l<=r)
    {
        ll mid=(l+r)>>1;
        ll c=count(mid);
        if(c>=x)r=mid-1;
        else l=mid+1;
    }
    return r+1;
}

int main()
{
    mou[1]=1;
    for(int i=2;i<maxn;i++)
    {
        if(!v[i]) p[++pri]=i,mou[i]=-1;
        for(int j=1;j<=pri&&p[j]*i<maxn;j++)
        {
            int k=p[j]*i;
            v[k]=true; mou[k]=-mou[i];
            if(i%p[j]==0) { mou[k]=0; break; }
        }
    }

    int n;scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        ll x;scanf("%lld",&x);
        printf("%lld\n",find_(x,up,x));
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值