BZOJ4330: JSOI2012 爱之项链

138 篇文章 0 订阅
42 篇文章 0 订阅

首先,要求有多少种不同的项链,需要先求出有多少种不同的戒指
m个彩色球状物,旋转后相同视为相同,R种颜色,是不是很眼熟(然而并不,为什么我看题的时候想的是可重复圆排...),没错这就是置换

首先由burnside引理得种类数 num=mi=1cim ci 表示第i种置换下相同的方案数),
然后由polya得, num=mi=1Rgcd(i,m)m

关于为什么旋转i次下的置换的环有 gcd(i,m) 个,是易证的我知道写易证会被人打死
那就证一下吧
d=gcd(i,m)
将戒指铺在数轴上,每m个为一个循环节,一个位置x不断往后跳i个位置,跳到一个位置y满足 yx(Mod m) ,一定有 yx=lcm(i,m) ,那么他在跳的过程中覆盖到了 lcm(i,m)i=md 个位置,这些位置在 Mod m 下互不相同且组成了一个置换环,每个置换环都有 md 个元素,那么一共就有 mmd=d 个置换环
证毕

考虑怎么求 mi=1Rgcd(i,m)
推一下柿子
mi=1Rgcd(i,m)>
d|mRdmdi=1,(i,md)=11>
d|mRdφ(md)
预处理一下 φ ,当 md 超过预处理的范围时可以 O(n) 枚举,分解质因数,也可以预处理 m 的质因数,md的质因子一定是 m 的质因子

对了对了,大家有没有注意到模数p=3214567很小, m 是有可能是模数的倍数,这时候m没有逆元(虽然这题数据水好像没有这种情况),那考虑没有逆元的时候要怎么求这个东西
因为 m<p2 ,所以 mp<p ,有逆元,因为答案是个整数,所以分子一定是 p 的倍数,我们可以分子分母同除一个p,计算 num=mi=1Rgcd(i,m)pmp ,在 Mod p2 下计算分子(因为 kp2p Mod p =0 )所以不会对答案造成影响,算粗 Mod p2 下的分子后再将它除以 p (还是因为Mod p2不会对答案产生影响,而分子又一定是 p 的倍数,所以一定能整除),这样算完之后就可以对mp求逆元了

然后我们终于算粗了 num
考虑算项链的种类

这个特殊纪念品的作用其实就是将环剖成了链,不让我们再算一次置换
那么设 f[i][0],f[i][1] 表示长度为i的项链,第i个戒指和第一个戒指是否相同(0表示不同,1表示相同),项链的种类数
f[i][0]=f[i1][1](num1)+f[i1][0](num2),f[i][1]=f[i1][0]
这个东西可以用矩乘

然后…没了吧…

code:

#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;

const ll Mod = 3214567;
const int maxn = 1e6+10;

ll n,m,R,num;

int p[maxn],pri,phi[maxn];
bool v[maxn];
void pre()
{
    phi[1]=1;
    for(int i=2;i<maxn;i++)
    {
        if(!v[i]) phi[p[++pri]=i]=i-1;
        for(int j=1;j<=pri;j++)
        {
            int k=i*p[j];
            if(k>=maxn) break;
            v[k]=true;
            if(i%p[j]==0)
            {
                phi[k]=phi[i]*p[j];
                break;
            }
            phi[k]=phi[i]*phi[p[j]];
        }
    }
}

int Mp[maxn],Mn;
void get_mp()
{
    ll k=m;
    for(int i=1;p[i]*p[i]<=k;i++) if(k%p[i]==0)
    {
        Mp[++Mn]=p[i];
        while(k%p[i]==0) k/=p[i];
    }
    if(k>1) Mp[++Mn]=k;
}
ll pw(const ll x,int k,ll M)
{
    ll ret=1ll;
    for(ll tmp=x%M;k;k>>=1,tmp=tmp*tmp%M)
        if(k&1) ret=ret*tmp%M;
    return ret;
}
ll N(const ll x,ll M) {return pw(x,M-2,M);}
int get_phi(int x)    
{
    if(x<maxn) return phi[x];
    int r=1;
    for(int i=1;i<=Mn&&x!=1;i++) if(x%Mp[i]==0)
    {
        x/=Mp[i];
        r*=Mp[i]-1;
        while(x%Mp[i]==0) x/=Mp[i],r=r*Mp[i];
    }
    return r;
}
void get_num()
{
    ll M=m%Mod==0?Mod*Mod:Mod,r=0;

    int qm=sqrt(m);
    for(int i=1;i<=qm;i++) if(m%i==0)
    {
        ll t=pw(R,i,M)*(get_phi(m/i)%M)%M;
        (r+=t)%=M;
        if(i*i==m) break;
        t=pw(R,m/i,M)*(get_phi(i)%M)%M;
        (r+=t)%=M;
    }
    r%=M;

    if(m%Mod==0) ((r/=Mod)*=N(m/Mod,Mod))%=Mod;
    else (r*=N(m,Mod))%=Mod;

    num=r;
}

struct Matrix
{
    ll a[2][2];
    Matrix(){a[0][0]=a[0][1]=a[1][0]=a[1][1]=0ll;}
}one,st,g;
inline Matrix operator *(Matrix &x,Matrix &y)
{
    Matrix ret;
    for(int i=0;i<2;i++)
    {
        for(int k=0;k<2;k++)
            for(int j=0;j<2;j++)
                (ret.a[i][j]+=x.a[i][k]*y.a[k][j]%Mod)%=Mod;
    }
    return ret;
}

ll solve()
{
    ll k=n-1;
    g.a[0][1]=num;
    Matrix f=st;
    for(;k;k>>=1,f=f*f)
        if(k&1) g=g*f;
    return g.a[0][0];
}

int main()
{
    pre();
    one.a[0][0]=one.a[1][1]=1ll;

    scanf("%lld%lld%lld",&n,&m,&R);
    get_mp();

    get_num();
    st.a[0][1]=1ll,st.a[0][0]=num-2;
    st.a[1][0]=num-1;

    printf("%lld\n",solve());

    return 0;
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值