SRM 549

A
看不懂..

B
事实上由于wizard可以调换硬币,所以你拿到的k个硬币一定是最小的k个硬币,将硬币排序后相当于求最多能拿多少枚硬币
发现n很小,可以状压,用0表示这个帽子还未翻开,1表示这个帽子翻开了有硬币,2表示翻开了没硬币。
先2^n预处理出所有合法的放硬币情况,再把翻开了的,没翻开的帽子加进去处理出所有合法的三进制状态,转移时先手枚举取哪一个帽子,对取所有帽子的情况取max,对于取每个帽子的答案,后手对这个帽子有没有硬币的情况取min

code:


inline void up(int &x,const int &y){if(x<y)x=y;}
inline void down(int &x,const int &y){if(x>y)x=y;}
const int maxn = 14;
const int maxm = 14;
const int max2 = 33000;
const int max3 = 2100000;
int n,m,K;
int s[maxn][maxm],xi[maxn],yi[maxn];
int w[maxn],wn;
int cr[maxn],cc[maxn];
int ok[max3],n1[max3],n2[max3];
int f[max3];

class MagicalHats {
    public:

    int solve()
    {
        int num=0; 
        for(int i=0;i<n;i++) for(int j=0;j<m;j++) if(s[i][j])
            num+=s[i][j],s[i][j]=num,xi[num]=i,yi[num]=j;
        int al2=1<<num,al3=1; for(int i=1;i<=num;i++) al3=al3*3;

        memset(ok,0,sizeof ok);
        for(int i=0;i<al2;i++)
        {
            for(int j=0;j<=n;j++) cr[j]=0;
            for(int j=0;j<=m;j++) cc[j]=0;
            for(int j=1;j<=num;j++) cr[xi[j]]++,cc[yi[j]]++;

            int nowi=0,ct=0;
            for(int j=0,k=1;j<num;j++,k=k*3) 
            {
                if(i>>j&1) nowi+=k,cr[xi[j+1]]++,cc[yi[j+1]]++,ct++;
                else nowi+=k*2;
            }
            ok[nowi]=1,n1[nowi]=ct,n2[nowi]=num-n1[nowi];

            for(int j=0;j<=n;j++) if(cr[j]&1) {ok[nowi]=0;break;}
            for(int j=0;j<=m;j++) if(cc[j]&1) {ok[nowi]=0;break;}
            if(n1[nowi]!=wn) ok[nowi]=0;
        }
        for(int i=al3-1;i>0;i--) if(ok[i])
        {
            for(int j=i,k=1,l=1;l<=num;l++,j/=3,k=k*3) 
            {
                if(j%3==1) ok[i-k]=1,n1[i-k]=n1[i]-1,n2[i-k]=n2[i];
                if(j%3==2) ok[i-k*2]=1,n1[i-k*2]=n1[i],n2[i-k*2]=n2[i]-1;
            }
        }
        memset(f,-1,sizeof f);
        for(int i=al3-1;i>=0;i--) if(ok[i])
        {
            f[i]=n1[i];
            if(n1[i]+n2[i]>=K) continue;
            for(int j=i,k=1,l=1;l<=num;l++,k=k*3,j/=3) if(j%3==0)
            {
                int mink=inf;
                if(ok[i+k]) down(mink,f[i+k]);
                if(ok[i+k*2]) down(mink,f[i+k*2]);
                if(f[i]<mink) f[i]=mink;
            }
        }
        if(f[0]==-1) return -1;
        int re=0; sort(w+1,w+wn+1);
        for(int i=1;i<=f[0];i++) re+=w[i];
        return re;
    }

    int findMaximumReward(vector<string> board, vector<int> coins, int numGuesses) {
        K=numGuesses;
        wn=coins.size(); for(int i=0;i<wn;i++) w[i+1]=coins[i];
        n=board.size();
        m=board[0].size();
        memset(s,0,sizeof s);
        for(int i=0;i<n;i++) for(int j=0;j<m;j++)
            if(board[i][j]=='H') s[i][j]=1;
        return solve();
    }
};

C
看不懂题解qwq

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值