第9章-用户分群方法-聚类评估指标

56 篇文章 6 订阅 ¥39.90 ¥99.00
本文介绍了聚类评估指标,包括轮廓系数、均方根标准差(RMSSTD)、R-Square和调整兰德指数(ARI)。通过例子解释了这些指标的计算方法和含义,帮助理解如何评价聚类效果的好坏。
摘要由CSDN通过智能技术生成

目录

简单例子

轮廓系数

均方根标准差

R-Square

ARI


        聚类是一种无监督分类算法,通常给定的样本没有类别或标签,聚类结果的好坏难以使用有监督模型的评估方法衡量。聚类评估指标思想在于类簇内的差异尽可能小,也就是紧密度高,而类簇间差异尽可能大,也就是分离度高。本文主要介绍轮廓系数(Silhouette Coefficient Index)、均方根标准差(Root-Mean-Square Standard Deviation,RMSSTD)、R-Square、调整的兰德指数(ARI)。

简单例子

        为了方便介绍各种评估指标,先给出一个例子。

        给定4个样本构成的样本集C=\{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4\},每个样本特征如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ErbaoLiu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值