线性回归之总离差平方和=回归平方和+残差平方和(TSS = ESS + RSS)及证明

本文介绍了线性回归中的总离差平方和(TSS)、回归平方和(ESS)和残差平方和(RSS),并阐述了它们之间的关系。TSS反映了观测值与真实平均值的偏差,ESS衡量模型估计值与真实平均值的误差,RSS表示观测值与模型估计值的差距。通过数学公式证明了TSS = ESS + RSS,揭示了模型如何分解总偏差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        假设有n个样本,分别为y_1,y_2,...y_n,样本的平均值记为

\bar{y}=\frac{1}{n}\sum_{i=1}^{n}y_i

举个例子,例如现在观察到3个样本,

y_1=30,y_2=30.1,y_3=29.9

那么样本平均值:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ErbaoLiu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值