机器学习之逻辑回归求解(梯度下降、随机梯度下降、随机平均梯度下降)

56 篇文章 3 订阅 ¥59.90 ¥99.00
本文深入探讨了逻辑回归模型的求解,通过梯度下降、随机梯度下降和随机平均梯度下降法进行详细解析。内容涵盖了梯度下降法的迭代过程,以及随机梯度下降法和随机平均梯度下降法在处理大规模数据集时的优势,并讨论了它们在实际应用中的优化策略和正则化处理。
摘要由CSDN通过智能技术生成

        可以阅读《机器学习之梯度下降法(GD)、随机梯度下降法(SGD)和随机平均梯度下降法(SAGD)》

        逻辑回归的原理请参见《机器学习之逻辑回归原理》。本篇文章对逻辑回归模型进行求解。先给出逻辑回归模型的两种形式:

(形式1)

                                                        L(\mathbf{f})=-\sum_{i=1}^{m}(y_iln\frac{1}{1+e^{-\mathbf{x_i}^T\mathbf{f}}}+(1-y_i)ln\frac{1}{1+e^{\mathbf{x_i}^T\mathbf{f}}})

                                                                                    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ErbaoLiu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值