布线问题
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
南阳理工学院要进行用电线路改造,现在校长要求设计师设计出一种布线方式,该布线方式需要满足以下条件:
1、把所有的楼都供上电。
2、所用电线花费最少
-
输入
-
第一行是一个整数n表示有n组测试数据。(n<5)
每组测试数据的第一行是两个整数v,e.
v表示学校里楼的总个数(v<=500)
随后的e行里,每行有三个整数a,b,c表示a与b之间如果建铺设线路花费为c(c<=100)。(哪两栋楼间如果没有指明花费,则表示这两栋楼直接连通需要费用太大或者不可能连通)
随后的1行里,有v个整数,其中第i个数表示从第i号楼接线到外界供电设施所需要的费用。( 0<e<v*(v-1)/2 )
(楼的编号从1开始),由于安全问题,只能选择一个楼连接到外界供电设备。
数据保证至少存在一种方案满足要求。
输出
- 每组测试数据输出一个正整数,表示铺设满足校长要求的线路的最小花费。 样例输入
-
1 4 6 1 2 10 2 3 10 3 1 10 1 4 1 2 4 1 3 4 1 1 3 5 6
样例输出
-
4
-
第一行是一个整数n表示有n组测试数据。(n<5)
思路:我这里使用的是普里姆算法,即将点分为两个集合,一个集合是已经加入到最小生成树中的顶点集合V,另一个是未加入生成树中的顶点集合U-V。
代码如下:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define MAXV 505
using namespace std;
int arcs[MAXV][MAXV];//无向网的邻接矩阵
bool if_V[MAXV];//如果在已经加入的生成树点集合V中
int vex[MAXV];//每个顶点连到外接电路所需要的花费
int e,v;
struct{
int adjvex;//邻接点
int lowcost;//最小花费
}closedge[MAXV];//每个V集合的点到U-V集合的点的最短花费
void my_init(){//初始化
memset(if_V,0,sizeof(if_V));
for(int i=1;i<=v;i++)
for(int j=1;j<=v;j++){
arcs[i][j]=101;
}
}
int minimum(int k){
int i,minn=101,minv;
for(i=1;i<=v;i++)
if(closedge[i].lowcost<minn&&closedge[i].lowcost!=0&&if_V[closedge[i].adjvex]){
minn=closedge[i].lowcost;minv=i;
}
return minv;
}
int main(){
int i,j,cases,v1,v2,weight,k,sum;
cin>>cases;
while(cases--){
sum=0;
cin>>v>>e;
my_init();//初始化
for(i=0;i<e;i++){//构建邻接矩阵
scanf("%d%d%d",&v1,&v2,&weight);
arcs[v1][v2]=weight;
arcs[v2][v1]=weight;
}
k=1;
for(j=1;j<=v;j++){//从起点出发,给辅助数组赋值
if(j==k){
closedge[j].lowcost=0;
if_V[k]=1;
}
else{
closedge[j].lowcost=arcs[k][j];
closedge[j].adjvex=k;
}
}
for(i=1;i<=v-1;i++){
k=minimum(k);//找到从V集合的点出发到U-V集合的顶点的最短距离
sum+=closedge[k].lowcost;
closedge[k].lowcost=0;
if_V[k]=1;//表示k顶点加入V集合
for(j=1;j<=v;j++)
if(arcs[k][j]<closedge[j].lowcost){//对辅助数组进行重新判断辅值
closedge[j].adjvex=k;
closedge[j].lowcost=arcs[k][j];
}
}
for(i=1;i<=v;i++)
scanf("%d",&vex[i]);
sort(vex+1,vex+v+1);//通过排序的方法找到外接到顶点的最小花费
cout<<sum+vex[1]<<endl;
}
return 0;
}