NYOJ 题目38 布线问题 (最小生成树 普里姆算法)

布线问题

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 4
描述
南阳理工学院要进行用电线路改造,现在校长要求设计师设计出一种布线方式,该布线方式需要满足以下条件:
1、把所有的楼都供上电。
2、所用电线花费最少
输入
第一行是一个整数n表示有n组测试数据。(n<5)
每组测试数据的第一行是两个整数v,e.
v表示学校里楼的总个数(v<=500)
随后的e行里,每行有三个整数a,b,c表示a与b之间如果建铺设线路花费为c(c<=100)。(哪两栋楼间如果没有指明花费,则表示这两栋楼直接连通需要费用太大或者不可能连通)
随后的1行里,有v个整数,其中第i个数表示从第i号楼接线到外界供电设施所需要的费用。( 0<e<v*(v-1)/2 )
(楼的编号从1开始),由于安全问题,只能选择一个楼连接到外界供电设备。
数据保证至少存在一种方案满足要求。
输出
每组测试数据输出一个正整数,表示铺设满足校长要求的线路的最小花费。
样例输入
1
4 6
1 2 10
2 3 10
3 1 10
1 4 1
2 4 1
3 4 1
1 3 5 6
样例输出
4

思路:我这里使用的是普里姆算法,即将点分为两个集合,一个集合是已经加入到最小生成树中的顶点集合V,另一个是未加入生成树中的顶点集合U-V。

代码如下:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define MAXV 505
using namespace std;
int arcs[MAXV][MAXV];//无向网的邻接矩阵 
bool if_V[MAXV];//如果在已经加入的生成树点集合V中 
int vex[MAXV];//每个顶点连到外接电路所需要的花费 
int e,v;
struct{
	int adjvex;//邻接点 
	int lowcost;//最小花费 
}closedge[MAXV];//每个V集合的点到U-V集合的点的最短花费
void my_init(){//初始化 
	memset(if_V,0,sizeof(if_V));
	for(int i=1;i<=v;i++)
	 for(int j=1;j<=v;j++){
 		arcs[i][j]=101;
 	}  
}
int minimum(int k){
	int i,minn=101,minv;
	for(i=1;i<=v;i++)
		if(closedge[i].lowcost<minn&&closedge[i].lowcost!=0&&if_V[closedge[i].adjvex]){
			minn=closedge[i].lowcost;minv=i;
		}
	return minv;	
}
int main(){
	int i,j,cases,v1,v2,weight,k,sum;
	cin>>cases;
	while(cases--){
		sum=0;
		cin>>v>>e;
		my_init();//初始化 
		for(i=0;i<e;i++){//构建邻接矩阵 
			scanf("%d%d%d",&v1,&v2,&weight);
			arcs[v1][v2]=weight;
			arcs[v2][v1]=weight;
		}
	    k=1;
		for(j=1;j<=v;j++){//从起点出发,给辅助数组赋值 
			if(j==k){
				closedge[j].lowcost=0;
				if_V[k]=1;
			}
			else{
				closedge[j].lowcost=arcs[k][j];
				closedge[j].adjvex=k;
			}
		}
		
		for(i=1;i<=v-1;i++){
			k=minimum(k);//找到从V集合的点出发到U-V集合的顶点的最短距离 
			sum+=closedge[k].lowcost;
			closedge[k].lowcost=0;
			if_V[k]=1;//表示k顶点加入V集合 
			for(j=1;j<=v;j++)
			if(arcs[k][j]<closedge[j].lowcost){//对辅助数组进行重新判断辅值 
				closedge[j].adjvex=k;
				closedge[j].lowcost=arcs[k][j];
			}
		}
		for(i=1;i<=v;i++)
		scanf("%d",&vex[i]);
		sort(vex+1,vex+v+1);//通过排序的方法找到外接到顶点的最小花费 
		cout<<sum+vex[1]<<endl;
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值