统计学习模型——朴素贝叶斯法

本文深入探讨朴素贝叶斯法,包括其基于特征条件独立假设的统计学习模型,后验概率最大化的学习策略,以及极大似然估计和贝叶斯估计在参数求解中的应用。通过解析朴素贝叶斯分类的基本公式和风险最小化原理,阐述了该方法在机器学习中的核心思想。
摘要由CSDN通过智能技术生成
  • 朴素贝叶斯法的三要素:学习输入/输出的联合概率分布、后验概率最大化、通过极大似然估计或贝叶斯估计进行参数求解

一、储备知识

  • 全概率公式:完备事件组 A 1 , ⋯   , A n A_1,\cdots,A_n A1,,An A 1 ∪ ⋯ ∪ A n A_1\cup\cdots\cup A_n A1An A i A j = ∅ , i ≠ j A_iA_j=\varnothing,i\neq j AiAj=,i=j,有
    B ∩ Ω = B ∩ ( A 1 ∪ ⋯ ∪ A n ) = ( B A 1 ) ∪ ⋯ ∪ ( B A n ) \begin{aligned} B\cap \Omega&=B\cap(A_1\cup\cdots\cup A_n) \\ &=(BA_1)\cup\cdots\cup (BA_n) \\ \end{aligned} BΩ=B(A1An)=(BA1)(BAn) ( B A i ) ∩ ( B A j ) = ∅ , i ≠ j (BA_i)\cap(BA_j)=\varnothing,i\neq j (BAi)(BAj)=,i=j,从而
    P ( B ) = P ( A 1 B ) + ⋯ + P ( A n B ) = ∑ i = 1 n P ( A i B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) \begin{aligned} P(B)&=P(A_1B)+\cdots+P(A_nB) \\ &=\sum_{i=1}^nP(A_iB) \\ &=\sum_{i=1}^nP(A_i)P(B|A_i) \\ \end{aligned} P(B)=P(A1B)++P(AnB)=i=1nP(AiB)=i=1nP(Ai)P(BAi)
  • 贝叶斯定理 P ( A i ∣ B ) = P ( A i B ) P ( B ) = P ( A i ) P ( B ∣ A i ) P ( B ) P(A_i|B)=\frac{P(A_iB)}{P(B)}=\frac{P(A_i)P(B|A_i)}{P(B)} P(AiB)=P(B)P(AiB)=P(B)P(
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值