Python CBOW代码实战,CBOW代码超简单讲解和步骤拆解,Word2vec代码构建思路,CBOW代码实例

24 篇文章 1 订阅
4 篇文章 1 订阅

1.CBOW模型简介

        CBOW模型是一种用于自然语言处理的算法模型,全称为Continuous Bag-of-Words模型。它是一种词向量表示模型,用于将文本中的单词转换为密集向量表示,并捕捉单词之间的语义关系。

        CBOW模型的基本思想是通过上下文中的单词来预测目标单词。它通过将上下文单词的词向量求和,然后进行线性变换和非线性变换得到目标单词的表示。在这个过程中,模型会不断调整单词的词向量,使得它们能够更好地表达单词的语义信息。

        CBOW模型的训练过程基于大量的文本数据,通过最大化目标单词的概率来学习词向量的表示。在训练过程中,模型会根据上下文单词的词向量和目标单词的实际输出计算误差,然后通过反向传播算法来更新词向量的参数,使得误差不断减小。

        CBOW模型具有较快的训练速度和较小的模型大小,在很多自然语言处理任务中表现良好。它可以用于词义相似度计算、文本分类、语言模型等多个领域。通过学习到的词向量表示,CBOW模型能够将单词转换为连续的向量空间,从而丰富了单词的语义信息,提高了文本处理的效果。

        

2.CBOW代码实战

2.1定义一个句子列表,后面会用这些句子来训练 CBOW 和 Skip-Gram 模型 

# 定义一个句子列表,后面会用这些句子来训练 CBOW 和 Skip-Gram 模型
sentences = ["Kage is Teacher", "Mazong is Boss", "Niuzong is Boss",
             "Xiaobing is Student", "Xiaoxue is Student",]
# 将所有句子连接在一起,然后用空格分隔成多个单词
words = ' '.join(sentences).split()
# 构建词汇表,去除重复的词
word_list = list(set(words))
# 创建一个字典,将每个词映射到一个唯一的索引
word_to_idx = {word: idx for idx, word in enumerate(word_list)}
# 创建一个字典,将每个索引映射到对应的词
idx_to_word = {idx: word for idx, word in enumerate(word_list)}
voc_size = len(word_list) # 计算词汇表的大小
print(" 词汇表:", word_list) # 输出词汇表
print(" 词汇到索引的字典:", word_to_idx) # 输出词汇到索引的字典
print(" 索引到词汇的字典:", idx_to_word) # 输出索引到词汇的字典
print(" 词汇表大小:", voc_size) # 输出词汇表大小

2.2 生成 CBOW 训练数据 

# 生成 CBOW 训练数据
def create_cbow_dataset(sentences, window_size=2):
    data = []# 初始化数据
    for sentence in sentences:
        sentence = sentence.split()  # 将句子分割成单词列表
        for idx, word in enumerate(sentence):  # 遍历单词及其索引
            # 获取上下文词汇,将当前单词前后各 window_size 个单词作为周围词
            context_words = sentence[max(idx - window_size, 0):idx] \
                + sentence[idx + 1:min(idx + window_size + 1, len(sentence))]
            # 将当前单词与上下文词汇作为一组训练数据
            data.append((word, context_words))
    return data
# 使用函数创建 CBOW 训练数据
cbow_data = create_cbow_dataset(sentences)
# 打印未编码的 CBOW 数据样例(前三个)
print("CBOW 数据样例(未编码):", cbow_data[:3])

2.3 定义 One-Hot 编码函数 

# 定义 One-Hot 编码函数
import torch # 导入 torch 库
def one_hot_encoding(word, word_to_idx):    
    tensor = torch.zeros(len(word_to_idx)) # 创建一个长度与词汇表相同的全 0 张量  
    tensor[word_to_idx[word]] = 1  # 将对应词的索引设为 1
    return tensor  # 返回生成的 One-Hot 向量
# 展示 One-Hot 编码前后的数据
word_example = "Teacher"
print("One-Hot 编码前的单词:", word_example)
print("One-Hot 编码后的向量:", one_hot_encoding(word_example, word_to_idx))

2.4 定义 CBOW 模型 

# 定义 CBOW 模型
import torch.nn as nn # 导入 neural network
class CBOW(nn.Module):
    def __init__(self, voc_size, embedding_size):
        super(CBOW, self).__init__()
        # 从词汇表大小到嵌入大小的线性层(权重矩阵)
        self.input_to_hidden = nn.Linear(voc_size, 
                                         embedding_size, bias=False)  
        # 从嵌入大小到词汇表大小的线性层(权重矩阵)
        self.hidden_to_output = nn.Linear(embedding_size, 
                                          voc_size, bias=False)  
    def forward(self, X): # X: [num_context_words, voc_size]
        # 生成嵌入:[num_context_words, embedding_size]
        embeddings = self.input_to_hidden(X)  
        # 计算隐藏层,求嵌入的均值:[embedding_size]
        hidden_layer = torch.mean(embeddings, dim=0)  
        # 生成输出层:[1, voc_size]
        output_layer = self.hidden_to_output(hidden_layer.unsqueeze(0)) 
        return output_layer    
embedding_size = 2 # 设定嵌入层的大小,这里选择 2 是为了方便展示
cbow_model = CBOW(voc_size,embedding_size)  # 实例化 CBOW 模型
print("CBOW 模型:", cbow_model)

2.5 训练 cbow 模型 

# 训练 cbow 类
learning_rate = 0.001 # 设置学习速率
epochs = 1000 # 设置训练轮次
criterion = nn.CrossEntropyLoss()  # 定义交叉熵损失函数
import torch.optim as optim # 导入随机梯度下降优化器
optimizer = optim.SGD(cbow_model.parameters(), lr=learning_rate)  
# 开始训练循环
loss_values = []  # 用于存储每轮的平均损失值
for epoch in range(epochs):
    loss_sum = 0 # 初始化损失值
    for target, context_words in cbow_data:
        # 将上下文词转换为 One-Hot 向量并堆叠
        X = torch.stack([one_hot_encoding(word, word_to_idx) for word in context_words]).float() 
        # 将目标词转换为索引值
        y_true = torch.tensor([word_to_idx[target]], dtype=torch.long) 
        y_pred = cbow_model(X)  # 计算预测值
        loss = criterion(y_pred, y_true)  # 计算损失
        loss_sum += loss.item() # 累积损失
        optimizer.zero_grad()  # 清空梯度
        loss.backward()  # 反向传播
        optimizer.step()  # 更新参数
    if (epoch+1) % 100 == 0: # 输出每 100 轮的损失,并记录损失
      print(f"Epoch: {epoch+1}, Loss: {loss_sum/len(cbow_data)}")  
      loss_values.append(loss_sum / len(cbow_data))
# 绘制训练损失曲线
import matplotlib.pyplot as plt # 导入 matplotlib
# 绘制二维词向量图
plt.rcParams["font.family"]=['SimHei'] # 用来设定字体样式
plt.rcParams['font.sans-serif']=['SimHei'] # 用来设定无衬线字体样式
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
plt.plot(range(1, epochs//100 + 1), loss_values) # 绘图
plt.title(' 训练损失曲线 ') # 图题
plt.xlabel(' 轮次 ') # X 轴 Label
plt.ylabel(' 损失 ') # Y 轴 Label
plt.show() # 显示图

 2.6 输出 cbow 习得的词嵌入

# 输出 cbow 习得的词嵌入
print("CBOW 词嵌入:")
for word, idx in word_to_idx.items(): # 输出每个词的嵌入向量
    print(f"{word}: {cbow_model.input_to_hidden.weight[:,idx].detach().numpy()}")

 

2.7 向量可视化看一下

fig, ax = plt.subplots() 
for word, idx in word_to_idx.items():
    # 获取每个单词的嵌入向量
    vec = cbow_model.input_to_hidden.weight[:,idx].detach().numpy() 
    ax.scatter(vec[0], vec[1]) # 在图中绘制嵌入向量的点
    ax.annotate(word, (vec[0], vec[1]), fontsize=12) # 点旁添加单词标签
plt.title(' 二维词嵌入 ') # 图题
plt.xlabel(' 向量维度 1') # X 轴 Label
plt.ylabel(' 向量维度 2') # Y 轴 Label
plt.show() # 显示图

 

3.总结

CBOW是word2vec的一种方法。

Word2Vec是一种用于学习词向量的算法模型,它能够将单词转换为密集的向量表示,并捕捉单词之间的语义关系。Word2Vec模型由Google于2013年提出,是一种基于神经网络的词嵌入技术。

Word2Vec模型包括两种主要的训练方法:Skip-gram和CBOW。Skip-gram模型的目标是通过目标词预测上下文词,而CBOW模型的目标是通过上下文词预测目标词。这两种模型均采用神经网络结构,在大规模文本语料上进行训练,学习得到每个单词的向量表示。

Word2Vec的核心思想是通过单词在上下文中的分布来学习单词的语义信息。具体而言,相似上下文中的单词会拥有相似的词向量表示,这样就能够捕捉到单词之间的语义关系。通过将单词表示为稠密的向量,Word2Vec模型可以表示单词之间的相似度,进而应用于词义相似度计算、文本分类、语言建模等多个自然语言处理任务中。

Word2Vec模型的训练速度快、效果好,因此在自然语言处理领域得到了广泛的应用。它为计算机更好地理解和处理自然语言提供了有效的工具,被认为是自然语言处理领域的重要突破之一。

 

 

  • 15
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Word2vec CBOW模型代码可以在这篇文本处理算法汇总文章中找到。具体的代码如下所示: ``` from keras.models import Sequential from keras.layers import Embedding, Dense, Merge # 定义CBOW模型 model = Sequential() model.add(Embedding(nb_word, word_size, name='word2vec')) model.add(Dense(1, activation='sigmoid')) # 编译模型 model.compile(loss='binary_crossentropy', optimizer='adam') # 训练模型 model.fit(x_train, y_train, epochs=10, batch_size=32) ``` 其中,`nb_word`表示词汇表的大小,`word_size`表示词向量的维度。CBOW模型的主要思想是根据上下文预测中心词,通过优化词向量来提高预测准确性。 这里使用了Keras库来实现CBOW模型,第一层是一个Embedding层,用于将单词索引转换为词向量。然后通过一个全连接层(Dense)进行二分类预测。 请注意,这只是CBOW模型代码示例,具体实现还需要根据你的数据和任务进行适当的调整和扩展。 参考资料: Word2vecCBOW模型的keras代码 Embedding层的文档:https://keras.io/zh/layers/embeddings/<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Word2vecCBOW模型的keras代码详解](https://blog.csdn.net/weixin_40699243/article/details/109271365)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医学小达人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值