剑指offer--c++--礼物的最大值

题目:

       在一个 m*n 的棋盘中的每一个格都放一个礼物,每个礼物都有一定的价值(价值大于0).你可以从棋盘的左上角开始拿各种里的礼物,并每次向右或者向下移动一格,直到到达棋盘的右下角。给定一个棋盘及上面个的礼物,请计算你最多能拿走多少价值的礼物?

如下图所示,从左上角(0,0)开始

 题目分析:

        1.判断是否是DP问题。1.最优子结构;2.重复子问题。分析一下,当前的最大值肯定是前一个的最大值,而且是累加的,可见符合DP条件。

        2.建立状态转移方程,分析一下,它只能往右和往下走,所以当前的最大值肯定和当前值的左边和上边相关。既然是最大,那么f(i,j) = max(f(i-1,j),f(i,j-1)),i表示当前行,j表示当前列。在分析一下,题目是说走过的最大路径值,说明要累加当前值,则得到最终状态转换方程f(i,j) = max(f(i-1,j),f(i,j-1))+arr[i*rows+j]。

       3.因为是表格,所以选择二位数组

       4.由于这个状态转移方程的特殊性,不需要初始化

最终编写代码:

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <stack>
#include <queue>
#include <list>
#include <unordered_map>
#include <cstring>
#include <map>
#include <stdexcept>

using namespace std;

class MyClass
{
public:
	int get_max_gift(int* arr, int rows, int cols)
	{
		if (arr == NULL || rows < 1 || cols < 1)
		{
			return 0;
		}

		int** f = new int*[rows];
		for (int k = 0; k < rows; k++)
		{
			f[k] = new int[cols];
		}

		for (int i = 0; i < rows; i++)
		{

			for (int j = 0; j < cols; j++)
			{
				int up = 0;
				int left = 0;
				if (i > 0)
					up = f[i-1][j];
				if (j > 0)
					left = f[i][j-1];
				
				f[i][j] = max(up, left) + arr[i*rows + j];
			}
		}
		int max = f[rows-1][cols-1];
		for (int i = 0; i < rows; i++)
		{
			delete[] f[i];
		}
		delete[] f;
		return max;
	}
};

int main()
{
	MyClass my_class;

	int arr[] = { 1, 10, 3, 8, 12, 2, 9, 6, 5, 7, 4, 11, 3, 7, 16, 5 };
	cout << my_class.get_max_gift(arr,4,4) << endl;

	system("pause");
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值