题目:
在一个 m*n 的棋盘中的每一个格都放一个礼物,每个礼物都有一定的价值(价值大于0).你可以从棋盘的左上角开始拿各种里的礼物,并每次向右或者向下移动一格,直到到达棋盘的右下角。给定一个棋盘及上面个的礼物,请计算你最多能拿走多少价值的礼物?
如下图所示,从左上角(0,0)开始
题目分析:
1.判断是否是DP问题。1.最优子结构;2.重复子问题。分析一下,当前的最大值肯定是前一个的最大值,而且是累加的,可见符合DP条件。
2.建立状态转移方程,分析一下,它只能往右和往下走,所以当前的最大值肯定和当前值的左边和上边相关。既然是最大,那么f(i,j) = max(f(i-1,j),f(i,j-1)),i表示当前行,j表示当前列。在分析一下,题目是说走过的最大路径值,说明要累加当前值,则得到最终状态转换方程f(i,j) = max(f(i-1,j),f(i,j-1))+arr[i*rows+j]。
3.因为是表格,所以选择二位数组
4.由于这个状态转移方程的特殊性,不需要初始化
最终编写代码:
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <stack>
#include <queue>
#include <list>
#include <unordered_map>
#include <cstring>
#include <map>
#include <stdexcept>
using namespace std;
class MyClass
{
public:
int get_max_gift(int* arr, int rows, int cols)
{
if (arr == NULL || rows < 1 || cols < 1)
{
return 0;
}
int** f = new int*[rows];
for (int k = 0; k < rows; k++)
{
f[k] = new int[cols];
}
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
{
int up = 0;
int left = 0;
if (i > 0)
up = f[i-1][j];
if (j > 0)
left = f[i][j-1];
f[i][j] = max(up, left) + arr[i*rows + j];
}
}
int max = f[rows-1][cols-1];
for (int i = 0; i < rows; i++)
{
delete[] f[i];
}
delete[] f;
return max;
}
};
int main()
{
MyClass my_class;
int arr[] = { 1, 10, 3, 8, 12, 2, 9, 6, 5, 7, 4, 11, 3, 7, 16, 5 };
cout << my_class.get_max_gift(arr,4,4) << endl;
system("pause");
return 0;
}