C++:剑指Offer第二版47题:礼物的最大价值

C++:剑指Offer第二版47题:礼物的最大价值

原题链接地址

传送门:https://leetcode-cn.com/problems/li-wu-de-zui-da-jie-zhi-lcof/

题目原文

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

示例 1:

输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物

提示:

0 < grid.length <= 200
0 < grid[0].length <= 200

题解:动态规划

直接普通深度优先搜索,直接超时,200*200的矩阵在计算时存在大量重复计算,时间复杂度超标。

假设现在计算的是坐标(i,j)的最大价值,那么我们只需要知道(i-1,j)和(i,j-1)位置的最大价值,以及坐标(i,j)上的价值,这呈一个递推的最优子结构。所以使用动态规划算法解决。

dp[i][j]表示坐标(i,j)的最大价值,它由dp[i-1][j]和dp[i][j-1]位置的最大价值以及坐标(i,j)上的价值grid[i][j]决定。所以能得到如下转移方程:
d p [ i ] [ j ] = { g r i d [ i ] [ j ] i = 0 , j = 0 d p [ i − 1 ] [ j ] + g r i d [ i ] [ j ] i ≠ 0 , j = 0 d p [ i ] [ j − 1 ] + g r i d [ i ] [ j ] i = 0 , j ≠ 0 m a x ( , ) + g r i d [ i ] [ j ] o t h e r s dp[i][j]=\left\{\begin{matrix} grid[i][j] & i=0,j=0 \\ dp[i-1][j]+grid[i][j] & i \neq 0,j=0 \\ dp[i][j-1]+grid[i][j] & i=0,j \neq 0 \\ max(,)+grid[i][j] & others \end{matrix}\right. dp[i][j]=grid[i][j]dp[i1][j]+grid[i][j]dp[i][j1]+grid[i][j]max(,)+grid[i][j]i=0,j=0i=0,j=0i=0,j=0others

public:
	int maxValue(vector<vector<int>>& grid) {
        int row = grid.size();
        int col = grid[0].size();
        vector<vector<int>> dp(row,vector<int>(col));//二维数组定长初始化
        //边界条件
        dp[0][0]=grid[0][0];
        for(int i=1;i<row;i++){
            dp[i][0]=dp[i-1][0]+grid[i][0];
        }
        for(int i=1;i<col;i++){
            dp[0][i]=dp[0][i-1]+grid[0][i];
        }
        //dp过程
        for(int i=1;i<row;i++){
            for(int j=1;j<col;j++){
                dp[i][j]=max(dp[i-1][j],dp[i][j-1])+grid[i][j];
            }
        }
        return dp[row-1][col-1];
    }

[1] https://leetcode-cn.com/problems/li-wu-de-zui-da-jie-zhi-lcof/solution/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我喝AD钙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值