原题链接地址
传送门:https://leetcode-cn.com/problems/li-wu-de-zui-da-jie-zhi-lcof/
题目原文
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物
提示:
0 < grid.length <= 200
0 < grid[0].length <= 200
题解:动态规划
直接普通深度优先搜索,直接超时,200*200的矩阵在计算时存在大量重复计算,时间复杂度超标。
假设现在计算的是坐标(i,j)的最大价值,那么我们只需要知道(i-1,j)和(i,j-1)位置的最大价值,以及坐标(i,j)上的价值,这呈一个递推的最优子结构。所以使用动态规划算法解决。
dp[i][j]表示坐标(i,j)的最大价值,它由dp[i-1][j]和dp[i][j-1]位置的最大价值以及坐标(i,j)上的价值grid[i][j]决定。所以能得到如下转移方程:
d
p
[
i
]
[
j
]
=
{
g
r
i
d
[
i
]
[
j
]
i
=
0
,
j
=
0
d
p
[
i
−
1
]
[
j
]
+
g
r
i
d
[
i
]
[
j
]
i
≠
0
,
j
=
0
d
p
[
i
]
[
j
−
1
]
+
g
r
i
d
[
i
]
[
j
]
i
=
0
,
j
≠
0
m
a
x
(
,
)
+
g
r
i
d
[
i
]
[
j
]
o
t
h
e
r
s
dp[i][j]=\left\{\begin{matrix} grid[i][j] & i=0,j=0 \\ dp[i-1][j]+grid[i][j] & i \neq 0,j=0 \\ dp[i][j-1]+grid[i][j] & i=0,j \neq 0 \\ max(,)+grid[i][j] & others \end{matrix}\right.
dp[i][j]=⎩⎪⎪⎨⎪⎪⎧grid[i][j]dp[i−1][j]+grid[i][j]dp[i][j−1]+grid[i][j]max(,)+grid[i][j]i=0,j=0i=0,j=0i=0,j=0others
public:
int maxValue(vector<vector<int>>& grid) {
int row = grid.size();
int col = grid[0].size();
vector<vector<int>> dp(row,vector<int>(col));//二维数组定长初始化
//边界条件
dp[0][0]=grid[0][0];
for(int i=1;i<row;i++){
dp[i][0]=dp[i-1][0]+grid[i][0];
}
for(int i=1;i<col;i++){
dp[0][i]=dp[0][i-1]+grid[0][i];
}
//dp过程
for(int i=1;i<row;i++){
for(int j=1;j<col;j++){
dp[i][j]=max(dp[i-1][j],dp[i][j-1])+grid[i][j];
}
}
return dp[row-1][col-1];
}
[1] https://leetcode-cn.com/problems/li-wu-de-zui-da-jie-zhi-lcof/solution/