难度:中等
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
- 如果题目有解,该答案即为唯一答案。
- 输入数组均为非空数组,且长度相同。
- 输入数组中的元素均为非负数。
示例 1:
输入: gas = [1,2,3,4,5] cost = [3,4,5,1,2] 输出: 3 解释: 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。 因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4] cost = [3,4,3] 输出: -1 解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。 我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油 开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油 开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油 你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。 因此,无论怎样,你都不可能绕环路行驶一周。
题目分析:
先把总油量和总消耗量对比一下看看,如果总消耗量大于总油量,那么一圈是永远跑不完的。直接返回-1。只用O(n)的时间复杂度,进行遍历。累加一下剩余油量,如果剩余油量小于0,说明不能再走向下一站了,那么从下一站开始走。
参考B站讲解:https://www.bilibili.com/video/BV13k4y1o7SU?from=search&seid=7970987650829199954
参考代码:
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int gas_total = 0;
int cost_total = 0;
for(int i = 0; i < gas.size(); i++)
{
gas_total += gas[i];
cost_total += cost[i];
}
if(gas_total < cost_total)
return -1;
int start = 0;
int cost_gas = 0;
for(int j = 0; j < gas.size(); j ++)
{
cost_gas = cost_gas + gas[j] - cost[j];
if(cost_gas < 0)
{
start = j + 1;
cost_gas = 0;
}
}
return start;
}
};