134. 加油站

本文探讨了一辆油箱容量无限的汽车如何在环路加油站中找到出发点,以完成一周的行驶。通过分析加油站的油量和行驶成本,提供了一个算法解决方案。如果总油量足以覆盖总消耗,算法将返回可行的起始加油站编号;反之,则返回-1。
摘要由CSDN通过智能技术生成

在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。

说明:

如果题目有解,该答案即为唯一答案。
输入数组均为非空数组,且长度相同。
输入数组中的元素均为非负数。
示例 1:

输入: 
gas  = [1,2,3,4,5]
cost = [3,4,5,1,2]

输出: 3

解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2:

输入: 
gas  = [2,3,4]
cost = [3,4,3]

输出: -1

解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。

分析:根据所有加油站的油量可以得到总油量,及总里程需要的油量。如果总油量小于总消耗,那么肯定是不能走完全程的。反之,则成立。
假设现在我们到达了第i 个油站,这时候还剩余的油量为sum,如果 sum + gas[i] - cost[i]小于0,我们无法 走到下一个油站,所以起点一定不在第i个以及之前的油站里面(都铁定走不到第i + 1号油站),起点只能在i + 1后者后面。

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        int sum = 0;
        int total = 0;
        int k = 0;
        for(int i = 0; i < gas.size(); i++) {
            sum += gas[i] - cost[i];
            if(sum < 0) {
                k = i + 1;
                sum = 0;
            }
            total += gas[i] - cost[i];
        }
        if(total < 0) {
            return -1;
        } else {
            return k;
        }
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值