动态规划 完全平方数

题目

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。


示例 1:
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4


示例 2:
输入:n = 13
输出:2
解释:13 = 4 + 9


提示:

1 <= n <= 104

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/perfect-squares
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

状态转移方程

for (int j = 1; j <= Math.sqrt((double)i); j++) {
	dp[i] = Math.min(dp[i], dp[i - j*j]+1);
}

dp[i] 表示组成i的平方数的最小个数,和零钱兑换一样,状态转移方程如公式,j <= Math.sqrt((double)i)是为了降低循环次数

Base

由状态转移方程可知

dp[0] = 0;
dp[1] = 1;

答案

class Solution {
    public int numSquares(int n) {
         int[] dp = new int[n+1];
         Arrays.fill(dp, n);
         dp[1] = 1;
         dp[0] = 0;
         for (int i = 2; i < n+1; i++) {
             for (int j = 1; j <= Math.sqrt((double)i); j++) {
                 dp[i] = Math.min(dp[i], dp[i - j*j]+1);
             }
         }
         return dp[n];
    }
}

其他解法

深度优先(DFS)

class Solution {
    public int numSquares(int n) {

        int[] visited = new int[n+1];
        Arrays.fill(visited, -1);
        return helper(n, visited);
    }

    public int helper(int n, int[] visited) {
        if (visited[n] != -1) {
            return visited[n];
        }
        if (n==0) {
            return 0;
        }
        int result = n;
        for (int i = 1; i*i <= n; i++) {
            result = Math.min(result,  fun(n-i*i, visited));
        }
        visited[n] = result + 1;
        return result + 1;
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值