题目
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例 1:
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2:
输入:n = 13
输出:2
解释:13 = 4 + 9
提示:
1 <= n <= 104
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/perfect-squares
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
状态转移方程
for (int j = 1; j <= Math.sqrt((double)i); j++) {
dp[i] = Math.min(dp[i], dp[i - j*j]+1);
}
dp[i] 表示组成i的平方数的最小个数,和零钱兑换一样,状态转移方程如公式,j <= Math.sqrt((double)i)是为了降低循环次数
Base
由状态转移方程可知
dp[0] = 0;
dp[1] = 1;
答案
class Solution {
public int numSquares(int n) {
int[] dp = new int[n+1];
Arrays.fill(dp, n);
dp[1] = 1;
dp[0] = 0;
for (int i = 2; i < n+1; i++) {
for (int j = 1; j <= Math.sqrt((double)i); j++) {
dp[i] = Math.min(dp[i], dp[i - j*j]+1);
}
}
return dp[n];
}
}
其他解法
深度优先(DFS)
class Solution {
public int numSquares(int n) {
int[] visited = new int[n+1];
Arrays.fill(visited, -1);
return helper(n, visited);
}
public int helper(int n, int[] visited) {
if (visited[n] != -1) {
return visited[n];
}
if (n==0) {
return 0;
}
int result = n;
for (int i = 1; i*i <= n; i++) {
result = Math.min(result, fun(n-i*i, visited));
}
visited[n] = result + 1;
return result + 1;
}
}