一方有难八方支援 联邦千店齐发吹响赈灾集结号

  漫天风雪,冰冻神州,2008年新春,我国南方地区普遍遭遇数十年甚至百年难遇的低温雨雪灾害。在突如其来的雪灾发生后,国际社会给予了高度关注并伸出援手,中国政府和无数灾民也在积极开展灾后自救工作,而中国企业在灾难面前的慷慨举动更令人心温暖如春。他们一面要考虑安置不能回家的员工,一面拿出钱款实物捐助灾民。没有人组织,没有人强求,中国企业在企业公民和社会责任的道路上越走越坚定。

  2008年3月1日,由中华慈善总会倡导,广东联邦家私集团有限公司发起并参与,以“春暖2008--联邦千店齐行动,携手赈灾建家园”主题的义卖及公益捐助活动,在全国360多座城市同时启动,吹响了全国上下、千店齐发的赈灾“集结号”。

  本次赈灾活动,由慈善机构、企业、商家与广大消费者的多方参与,让更多人走近和参与慈善事业,以实际行动为灾区献温暖。从这个意义上来说,此次义卖及公益募捐活动,其意义已经远远超越了慈善本身。联邦集团有关负责人说:一方有难、八方支援是中华民族的传统美德,博爱互助、和谐发展是社会倡导的时代新风。联邦集团植根中华沃土,发展壮大至今,一直以来都在积极承担社会责任。面对灾后重建的艰巨任务,我们发起此次义卖及公益募捐活动,一是希望与联邦集团一直风雨同舟、共荣共赢的加盟商朋友携起手来,结合实际情况承担起各自力所能及的责任,在自己所辖区域内积极奉献诚挚的爱心,共同为建设和谐共赢、圆融互惠的美好明天而努力。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值