更多目标检测、图像分类、识别和目标追踪等项目可看我主页其他文章
功能演示:
基于yolov8和deepsort的人、车、电动车,三轮车等检测、追踪和计数,支持视频和摄像实时检测【python源码】_哔哩哔哩_bilibili
(一)简介
基于yolov8和deepsort的人、车、电动车,三轮车等检测、追踪和计数系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,训练好的模型权重,模型训练记录,ui界面等。
UI界面由pyqt5设计实现;可外接usb摄像头或直接使用笔记本摄像头实现检测与追踪功能。
该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:
超详细的pycharm+anaconda搭建python虚拟环境_pycharm配置anaconda虚拟环境-CSDN博客
pycharm+anaconda搭建python虚拟环境_哔哩哔哩_bilibili
vscode和anaconda安装和配置可观看教程:
超详细的vscode+anaconda搭建python虚拟环境_vscode anaconda-CSDN博客
(二)项目介绍
1. 项目结构
2.整个项目使用过程
该项目可以使用已经训练好的模型权重,也可以自己重新训练,若使用原项目训练好的模型,则下面的操作不用执行,直接运行gui.py文件即可弹出界面,实现目标检测与追踪
1. yolov8模型训练
1). 修改数据集路径:打开yolov8/data/data.yaml, 修改train和val的路径为自己数据集的路径;修改下面的类别数目和类别名称
2)打开train.py文件,文件中data_yaml变量的值为文件data.yaml的路径【即步骤1中的data.yaml路径】
3). 运行train.py文件,训练模型,训练完成后,结果保存在yolov8/runs中
4). 修改val.py文件中训练好的模型路径,运行val.py文件,验证模型,验证完成后,结果保存在yolov8/runs中
2. 模型应用
打开gui.py文件
1)修改gui.py文件中最下面的model_dir0为自己训练好的yolov8模型权重的路径
2)运行gui.py文件即可使用训练好的模型
3. 部分数据展示
4.GUI界面(技术:pyqt5+python+opencv)
a.GUI初始界面
b.视频或摄像检测界面
5. yolov8模型的一些指标图表等
(三)总结
以上即为整个项目的介绍,整个项目主要包括以下内容:完整的程序代码文件、训练好的模型、数据集、UI界面和各种模型指标图表等。
整套包含项目全部资料,一步到位,拿来就用,省心省力!
项目运行过程如出现问题,请及时交流!