341. 最优贸易(dp思想运用,spfa,最短路)

文章介绍了如何通过动态规划方法解决一个关于贸易的问题,商人阿龙在C国不同城市间利用商品价格差异赚取旅费,通过计算从1号城市到n号城市的最有利买卖路径,确定最大差价收益。文章提及了Dijkstra算法的限制,并推荐使用Bellman-Ford或SPFA算法处理可能存在的环形图问题。
摘要由CSDN通过智能技术生成

341. 最优贸易 - AcWing题库

C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。

任意两个城市之间最多只有一条道路直接相连。

这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。

C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。

但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。

商人阿龙来到 C 国旅游。

当他得知“同一种商品在不同城市的价格可能会不同”这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚一点旅费。

设 C 国 n 个城市的标号从 1∼n,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。

在旅游的过程中,任何城市可以被重复经过多次,但不要求经过所有 n 个城市。

阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品——水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。

因为阿龙主要是来 C 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。

现在给出 n 个城市的水晶球价格,m 条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。

请你告诉阿龙,他最多能赚取多少旅费。

注意:本题数据有加强。

输入格式

第一行包含 2 个正整数 n 和 m,中间用一个空格隔开,分别表示城市的数目和道路的数目。

第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城市的商品价格。

接下来 m 行,每行有 33 个正整数,x,y,z,每两个整数之间用一个空格隔开。

如果 z=1,表示这条道路是城市 x 到城市 y 之间的单向道路;如果 z=2,表示这条道路为城市 x 和城市 y 之间的双向道路。

输出格式

一个整数,表示答案。

数据范围

1≤n≤100000
1≤m≤500000
1≤各城市水晶球价格≤100

输入样例:
5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2
输出样例:
5

解析 :

本题做法有很多,可以使用分层图来处理,这里使用dp的方式处理。

状态划分:不重不漏,将状态转移所依据的状态体现出来;

fmax[i], fmin[i] 表示:路径上买和卖的分界点为 i 时,买入的最小值为fmin[i],卖出的最大值为fmax[i];

那么最终的结果就为 max{fmax[i]-fmin[i]}。

状态转移方程为:fmin[k]=min(fmin[j],……,wk),

fmax[k]的状态转移方程类似。

本质上是个dp问题,由于本题中的图可能是有环的,即dp的状态转移是环形的具有后效性,所以我们需要将其转换最短路问题进行处理(对于环形dp可查看dp专栏)

本题要有一点特别的地方是,本题边的权值在点上,而不在边上。仔细观察可以发现,本题是不能使用Dijkstra 算法的,因为从公式fmin[k]=min(fmin[j],……,wk)可以看出来如果使用Dijkstra算法,当存在环时,已经更新过的点还有可能被更新,等价于有负权边,换句话说,路径上的最小距离不单调递增。所以我们只能使用bellman_ford算法或其升级版算法spfa算法。

dp相当于求拓扑图上的最短路。spfa可以求任意图上的最短路。

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
using namespace std;
typedef pair<double, int > PDI;
typedef pair<int, int> PII;
const int N = 1e5 + 5, M = 2e6 + 5, INF = 0x3f3f3f3f;
int n, m;
int ht[N], hs[N], e[M], ne[M], idx;
int w[N], dmin[N], dmax[N];
int q[N];
int vis[N];

void add(int h[], int a, int b) {
	e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

void spfa(int h[], int dist[], int type) {
	int hh = 0, tt = 1;
	if (type==0) {
		memset(dist, 0x3f, sizeof dmin);
		dist[1] = w[1];
		q[0] = 1;
	}
	else {
		memset(dist, 0, sizeof dmax);
		dist[n] = w[n];
		q[0] = n;
	}
	while (hh != tt) {
		int t = q[hh++];
		if (hh == N)hh = 0;
		vis[t] = 0;
		for (int i = h[t]; i != -1; i = ne[i]) {
			int j = e[i];
			if (type == 0 && dist[j]>min(dist[t], w[j]) || type == 1 && dist[j]<max(dist[t], w[j])) {
				if (type == 0) {
					dist[j] = min(dist[t], w[j]);
				}
				else {
					dist[j] = max(dist[t], w[j]);
				}
				if (vis[j] == 0) {
					q[tt++] = j;
					if (tt == N)tt = 0;
					vis[j] = 1;
				}
			}
		}
	}
}

int main() {
	scanf("%d%d", &n, &m);
	for (int i = 1; i <= n; i++) {
		scanf("%d", &w[i]);
	}
	memset(hs, -1, sizeof hs);
	memset(ht, -1, sizeof ht);
	for (int i = 1,a,b,c; i <= m; i++) {
		scanf("%d%d%d", &a, &b,&c);
		add(hs, a, b), add(ht, b, a);
		if (c == 2) {
			add(hs, b, a), add(ht, a, b);
		}
	}

	spfa(hs, dmin, 0);
	spfa(ht, dmax, 1);
	int ret = 0;
	for (int i = 1; i <= n; i++) {
		ret = max(dmax[i] - dmin[i], ret);
	}
	cout << ret << endl;

	return 0;
}


  • 25
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值