大模型开发 - 一文搞懂Embedding工作原理

本文将从Text Embedding工作原理 Image Embedding工作原理 、Vedio Embedding工作原理三个方面,带您一文搞懂Embedding工作原理

Embedding可视化

一、 Text Embedding工作原理

文本向量化 (Text Embedding) :将文本数据(词、句子、文档)表示成向量的方法。

词向量化将词转为二进制或高维实数向量,句子和文档向量化则将句子或文档转为数值向量,通过平均、神经网络或主题模型实现。

  • 词向量化:将单个词转换为数值向量。
    • 独热编码(One-Hot Encoding):为每个词分配一个唯一的二进制向量,其中只有一个位置是1,其余位置是0。
    • 词嵌入(Word Embeddings):如Word2Vec, GloVe, FastText等,将每个词映射到一个高维实数向量,这些向量在语义上是相关的。

在这里插入图片描述

词向量化

  • 句子向量化:将整个句子转换为一个数值向量。
    • 简单平均/加权平均:对句子中的词向量进行平均或根据词频进行加权平均。
    • 递归神经网络(RNN):通过递归地处理句子中的每个词来生成句子表示。
    • 卷积神经网络(CNN):使用卷积层来捕捉句子中的局部特征,然后生成句子表示。
    • 自注意力机制(如Transformer):如BERT模型,通过对句子中的每个词进行自注意力计算来生成句子表示。

在这里插入图片描述

BERT句子向量化

  • 文档向量化:将整个文档(如一篇文章或一组句子)转换为一个数值向量。
    • 简单平均/加权平均:对文档中的句子向量进行平均或加权平均。
  •    文档主题模型(如LDA):通过捕捉文档中的主题分布来生成文档表示。
    
  •    层次化模型:如Doc2Vec,它扩展了Word2Vec,可以生成整个文档的向量表示。************
    

在这里插入图片描述


文档向量化

统计方法用TF-IDF和N-gram统计生成文本向量,而神经网络方法如Word2Vec、GloVe等通过深度学习学习文本向量。

  • 基于统计的方法
  • TF-IDF:通过统计词频和逆文档频率来生成词向量或文档向量。
  • N-gram:基于统计的n个连续词的频率来生成向量。

在这里插入图片描述

TF-IDF

  • 基于神经网络的方法
  • 词嵌入:
  •   Word2Vec:通过预测词的上下文来学习词向量。
    
  •   GloVe:通过全局词共现统计来学习词向量。
    
  •   FastText:考虑词的n-gram特征来学习词向量。
    
  • 句子嵌入:
  •   RNN:包括LSTM和GRU,可以处理变长句子并生成句子向量。
    
  •   Transformer:使用自注意力机制和位置编码来处理句子,生成句子向量。
    
  • 文档嵌入:
  •   Doc2Vec:扩展了Word2Vec,可以生成整个文档的向量表示。
    
  •   BERT:基于Transformer的预训练模型,可以生成句子或短文档的向量表示。
    

在这里插入图片描述

Word2Vec

*工作原理: *将离散的文字信息(如单词)转换成连续的向量数据。这样,语义相似的词在向量空间中位置相近,并通过高维度捕捉语言的复杂性。

  • 将离散信息(如单词、符号)转换为分布式连续值数据(向量)。
  • 相似的项目(如语义上相近的单词)在向量空间中被映射到相近的位置。
  • 提供了更多的维度(如1536个维度)来表示人类语言的复杂度。

举例来讲,这里有三句话:

  • “The cat chases the mouse” 猫追逐老鼠。
  • “The kitten hunts rodents” 小猫捕猎老鼠。
  • “I like ham sandwiches” 我喜欢火腿三明治。

人类能理解句子1和句子2含义相近,尽管它们只有“The”这个单词相同。但计算机需要Embedding技术来理解这种关系。Embedding将单词转换为向量,使得语义相似的句子在向量空间中位置相近。这样,即使句子1和句子2没有很多共同词汇,计算机也能理解它们的相关性。

如果是人类来理解,句子 1 和句子 2 几乎是同样的含义,而句子 3 却完全不同。但我们看到句子 1 和句子 2 只有“The”是相同的,没有其他相同词汇。计算机该如何理解前两个句子的相关性?

Embedding将单词转换为向量,使得语义相似的句子在向量空间中位置相近。这样,即使句子1和句子2没有很多共同词汇,计算机也能理解它们的相关性。

在这里插入图片描述

向量空间可视化

二、 Image Embedding工作原理

图像向量化 *(Image Embedding) 将图像数据转换为向量的过程

卷积神经网络和自编码器都是用于图像向量化的有效工具,前者通过训练提取图像特征并转换为向量,后者则学习图像的压缩编码以生成低维向量表示。

  • 卷积神经网络(CNN):通过训练卷积神经网络模型,我们可以从原始图像数据中提取特征,并将其表示为向量。例如,使用预训练的模型(如VGG16, ResNet)的特定层作为特征提取器。
  • 自编码器(Autoencoders):这是一种无监督的神经网络,用于学习输入数据的有效编码。在图像向量化中,自编码器可以学习从图像到低维向量的映射。****

在这里插入图片描述

CNN

*工作原理: *通过算法提取图像的关键特征点及其描述符,将这些特征转换为高维向量表示,使得在向量空间中相似的图像具有相近的向量表示,从而便于进行图像检索、分类和识别等任务。

  • 特征提取:使用算法(如SIFT、SURF、HOG等)从图像中提取关键特征点及其描述符。
  • 高维空间:图像向量通常在高维空间中表示,每个维度对应一个特征或特征描述符。
  • 相似度度量:在向量空间中,可以使用距离度量(如欧氏距离、余弦相似度等)来比较不同图像向量的相似度。

在这里插入图片描述

图像向量化

三、 Vedio Embedding工作原理**

视频向量化 *(Vedio Embedding): *OpenAI的Sora将视觉数据转换为图像块(Turning visual data into patches)。

  • 视觉块的引入: 为了将视觉数据转换成适合生成模型处理的格式,研究者提出了视觉块嵌入编码(visual patches)的概念。这些视觉块是图像或视频的小部分,类似于文本中的词元。
  • 处理高维数据: 在处理高维视觉数据时(如视频),首先将其压缩到一个低维潜在空间。这样做可以减少数据的复杂性,同时保留足够的信息供模型学习。

在这里插入图片描述

将视觉数据转换为图像块

*工作原理: Sora 用visual patches 代表被压缩后的视频向量进行训练,每个patches相当于GPT中的一个token。使用patches,可以对视频、音频、文字进行统一的向量化表示,和大模型中的 tokens 类似,Sora用 patches 表示视频,把视频压缩到低维空间(latent space)后表示为Spacetime patches。

OpenAI大模型的核心架构:大力出奇迹。 Embedding技术实现文本、图像、视频等数据向量化表示,为大型模型提供了丰富的特征输入。只要模型规模足够大,这些向量化数据就能驱动模型生成各种所需的内容,体现了“万物皆可生成”的能力**

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

  • 15
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值