- 博客(569)
- 收藏
- 关注
原创 Agent技术全景图:从LLM智能体原理到工业级应用实践(附主流框架源码剖析)
摘要: Agent是一种能够结合大模型、上下文和API工具来规划并解决用户问题的智能体。其架构包括控制端(Brain)、感知端(Perception)和行动端(Action)。控制端由大语言模型(LLMs)构成,负责推理、记忆和知识管理;感知端通过多模态输入获取环境信息;行动端执行决策并反馈。Agent通过自然语言交互、知识检索、记忆管理和规划能力实现复杂任务,同时具备迁移性和泛化性,可适应多种场景。其核心优势在于动态学习、多模态感知与工具调用能力,从而提升智能交互的效率和准确性。
2025-08-30 11:23:51
452
原创 2025年AI Agent精华合集:核心资料与前沿论文一网打尽
2025年AI Agent将成为AI应用的核心方向,其通过赋予大语言模型(LLM)自主决策与工具调用能力,实现从对话工具到实际"行动者"的转变。AI Agent与Agentic Workflow的核心区别在于自主性:前者具备动态决策能力,后者依赖预设规则。AI Agent采用认知架构,结合记忆机制和工具库,能灵活应对开放性问题。随着技术发展,AI Agent将在复杂场景中发挥更大作用,成为推动AI产业落地的关键突破点。
2025-08-30 11:21:35
610
原创 2025 AI大模型学习路径图:从新手到高手,助你毕业即斩获心仪Offer
本文为人工智能初学者提供了一份系统学习路线。首先强调掌握Python编程语言及其科学计算库作为基础,包括环境搭建、函数、面向对象编程等核心内容。文章指出,入门阶段需要克服畏难心理,从基础数学和编程知识入手,通过循序渐进的学习方式逐步深入AI领域。该指南旨在帮助零基础学习者建立知识框架,明确学习路径,从而更高效地开启AI学习之旅。
2025-08-30 11:02:40
725
原创 年薪154万!大模型应用开发工程师:程序员未来五年的“黄金船票”
2025年的春天,一则消息在程序员圈层炸开了锅:某顶尖科技公司为一位“大模型应用开发工程师”开出了高达154万元的年薪。这并非营销噱头,而是真实发生在招聘市场上的案例。当“35岁危机”、“卷不动了”成为许多技术从业者心头的阴霾时,这个新兴岗位的横空出世,如同一道刺破云层的曙光,宣告了一个全新职业纪元的开启。它不仅仅是高薪的代名词,更是程序员群体在人工智能浪潮中实现职业跃迁的“黄金船票”。如果你还在为技术栈的更新迭代而焦虑,如果你渴望在职业生涯中找到一个兼具技术深度、商业价值与广阔前景的方向,那么,大模型应用
2025-08-22 14:13:24
974
原创 一张图看懂大模型:主流架构类型深度解析
大模型主流架构对比 目前主流的大模型主要基于Transformer框架,可分为三种架构: Encoder-only架构:仅使用编码器部分,适合自然语言理解任务(如文本分类)。其双向注意力机制能全面捕捉上下文信息,但生成能力较弱。 Encoder-Decoder架构:结合编码器和解码器,适用于条件生成任务(如机器翻译)。通过交叉注意力实现编码-解码交互,但计算成本较高。 Decoder-only架构:仅保留解码器,采用单向注意力机制,适合无条件生成任务(如文本创作)。参数规模更小,随着数据量增长展现出强大潜力
2025-08-22 11:50:42
633
原创 当RAG拥有“大脑”:揭秘Agentic RAG的进化之路
Agentic RAG:为传统RAG赋予智能决策能力 Agentic RAG是一种将AI代理整合到检索增强生成(RAG)系统中的创新方法,它通过赋予系统自主决策能力来突破传统RAG的限制。相比仅使用单一知识源的Naive RAG,Agentic RAG能够访问多个外部知识源和工具,如Web搜索、API等,并具备对检索结果进行验证和重新检索的智能判断能力。 Agentic RAG系统可分为单代理和多代理架构。单代理系统主要作为路由器,在多知识源间进行选择;而多代理系统则通过专业分工,由不同代理负责特定领域的数
2025-08-13 14:30:37
576
原创 信通院联合阿里大厂推出的《大模型典型示范应用案例集》(附pdf),包含99个优秀案例
《大模型典型示范应用案例集》由阿里云联合99家合作伙伴发布,精选97个优秀案例,涵盖医疗、金融、政务等10余个行业,分为"行业赋能""智能应用""生态服务"三大类。案例显示,上海占申报案例超50%,大中型企业占比80%成为创新主力,AI智能体应用占比23%成为新热点,RAG技术构建的知识库成为主流辅助手段。该案例集展示了大模型在工业、能源、教育等领域的多元化落地实践,包括智能采编、法律咨询、医疗辅助等创新应用,以及开源模型、数据标注等生态服务。
2025-08-13 14:18:45
1107
原创 手把手教你用Docker部署Dify平台,打造可视化LLM应用环境_dify docker部署
Dify是一款开源大语言模型应用开发平台,提供后端即服务和LLM Ops功能,支持快速构建生产级AI应用。平台内置数百个模型支持、Prompt编排、RAG引擎、Agent框架等关键技术栈,并提供易用界面和API。Dify采用Docker部署,支持Windows/MacOS/Linux系统,最低要求2核CPU和4GB内存。部署步骤包括克隆代码库、配置环境、启动Docker容器等。作为开源项目,Dify允许开发者基于任意模型自建类似GPTs的应用,同时保持数据完全控制。
2025-08-04 15:01:25
881
原创 30+程序员想转行还来得及吗?这20条建议让你少走2两年弯路!_30岁程序员转行做什么
30岁以上程序员转行可行,但需谨慎评估。文章针对转行决策提出20条建议:1)明确转行动机,区分冲动与真实需求;2)评估行业前景,优先选择技能门槛低、年龄限制宽松的领域;3)发挥现有经验优势,考虑可迁移职业或内部转岗;4)做好经济与心理准备,接受从零开始;5)通过系统学习、人脉资源快速获取入行资格。重点强调大模型等AI领域存在机会,建议结合自身优势选择跨度较小的方向,并通过"复制经验+持续投入"实现平滑过渡。转行需平衡风险与机遇,关键是要做好充分准备和长期坚持。
2025-08-04 15:00:13
536
原创 一文搞懂大模型应用架构,大模型最全应用架构解析
本文介绍了一个层次化的大模型应用架构,包含基础设施、模型层、智能体、能力层和应用层五个部分。基础设施提供硬件支持;模型层整合各类AI模型;智能体实现高级功能如检索增强生成;能力层提供文字、图像等处理技术;应用层则面向农业、工业等行业。文章以AI搜索平台为例,说明该架构如何通过RAG技术整合搜索引擎和大模型能力,提升搜索体验。最后提供了大模型学习路线和实战资源,帮助开发者系统掌握大模型技术。
2025-08-04 14:58:18
395
原创 35岁后程序员都去哪了?五条转型路径,有人年薪百万有人创业千万
35岁不是终点,而是新起点:阿里P9专家靠经验规避千万级漏洞,42岁架构师年薪80万,技术转产品经理薪资涨20%。五条转型路径证明,经验才是数字时代的铁饭碗。”
2025-07-18 17:32:17
1211
原创 企业AI大模型私有化部署解决方案_敏感私有化部署算法
随着人工智能技术的快速发展,AI大模型在企业应用中扮演着越来越重要的角色。然而,许多企业在使用AI大模型时面临着数据隐私保护和性能优化的挑战。为了解决这些问题,企业AI大模型私有化部署成为一种理想的解决方案。私有化部署允许企业在自己的服务器上运行AI大模型,保护数据隐私并提高数据处理性能,从而提高业务效率和竞争力。
2025-07-18 17:25:16
656
原创 中国人工智能应用发展报告(2025)|附57页PDF文件下载
2025年中国AI应用全景报告摘要:阿里云研究院联合央视等机构发布《中国人工智能应用发展报告》,基于1500份问卷及企业调研,提出"654"体系——6大技术趋势、5类应用场景、4维产业评估,系统梳理AI发展现状。报告涵盖技术创新、行业落地及智能化评估框架,展现AI赋能各领域的全景图。完整版报告及学习资料可通过官方渠道免费获取。
2025-07-16 15:57:09
507
原创 MCP与传统API有什么区别?
🤖 下一代 API 设计范式?MCP 协议正重塑 AI Agent 与工具的连接方式!随着大型语言模型(LLM)加速落地,我们越来越多地看到 AI Agent 在企业场景中扮演主导角色:自动问答、智能运维、个性化推荐、财务分析……这些 Agent 的核心能力,离不开与外部数据、系统、工具的深度交互。
2025-07-16 15:54:14
832
原创 斩获56.4k星标!这本大模型神书到底有多猛
如果你一直想搞懂大模型到底是怎么“炼”出来的,那这本书绝对不容错过!它是一本注重实操的大模型入门指南,作者像带徒弟一样,手把手教你从头开始搭建、训练、微调一个属于你自己的语言模型。从数据处理到模型部署,每一步都讲得非常细致,还配有代码和图解,真正做到“看得懂、学得会、做得出来”。
2025-07-11 10:51:49
457
原创 英伟达:专门微调后的小模型才是Agentic AI的未来
英伟达提出小语言模型(SLM)将成为Agentic AI的未来发展方向。相比于大语言模型(LLM),SLM具有延迟低、成本低、部署灵活等优势,更适合处理智能体系统中的特定子任务。英伟达建议通过"数据飞轮"方法,收集实际使用数据,对任务进行聚类分析,为不同子任务微调专用SLM,形成模块化智能体系统。虽然SLM面临前期投资过大、评估方式不合理等落地障碍,但英伟达认为从LLM向SLM转型将带来显著的运营和经济收益。文章还提供了大模型学习资料,帮助开发者系统掌握AI大模型技术。
2025-07-11 10:29:47
1050
原创 厦门国际银行RAG方案分享-把RAG做好的方案。
厦门国际银行RAG方案分享:基于大模型的金融监管问答系统 本文分享了参加厦门国际银行数创金融杯比赛时的RAG(检索增强生成)方案。该方案采用七步流程:文档解析、文本切块、问题检索、数据构造、模型微调、推理和结果投票。重点优化了文档处理(智能切块保持语义完整性)和检索效率(尝试不同块大小平衡精度与覆盖范围)。方案采用Qwen3-8B模型,通过LoRA/QLoRA微调,并最终实现多模型融合提升效果。该方案在10天内进入比赛前十,展示了RAG技术在金融监管问答中的实用价值。完整代码已开源在TrustRAG项目中。
2025-07-10 18:41:56
585
原创 一篇搞懂大模型学习路线!2025最新版,从零开始学AI不走弯路
大模型如今炙手可热,成为科技领域的焦点,激发了无数人尤其是初学者的热情。越来越多的新手希望通过学习大模型技术,踏入AI世界,拥抱未来的发展新机遇。
2025-07-03 11:26:29
1431
原创 智能体框架:11 个顶级 AI Agent 框架!
AI Agent框架助力开发者构建智能应用 摘要:本文介绍了11个当前最优秀的AI Agent框架,帮助开发者构建能够自主推理、规划和执行复杂任务的智能系统。这些框架包括LangChain、微软的AutoGen和CrewAI等,它们利用大型语言模型(LLM)作为核心引擎,结合记忆、工具使用等组件,使AI Agent从简单的聊天机器人发展为能进行多步推理的复杂系统。文章详细比较了各框架的特性、优缺点和适用场景,如LangChain的模块化设计、AutoGen的多Agent协作能力,以及CrewAI的团队模拟功
2025-07-03 11:16:53
1118
原创 Ollama + AnythingLLM 本地部署,NAS 打造个人 AI 知识库
摘要:本文介绍了将Ollama与AnythingLLM结合在NAS本地部署的方法,打造个人AI知识库。AnythingLLM是一款全栈应用,支持多文档格式转换、多用户管理及多种LLM模型选择。文章详细讲解了Docker Compose安装步骤和使用方法,包括模型对接测试、文档上传、知识库设置等功能体验。尽管知识库匹配效果有待优化,但AnythingLLM界面简洁、操作友好,特别适合新手入门使用。最后还提供了大模型学习资料福利,包含学习路线、实战案例等资源。
2025-07-02 20:43:41
1045
原创 大模型电子书学习推荐 | 12本大模型书籍(附pdf版),看完少走一半弯路
《大模型入门必看12本书》推荐了两本核心书籍:第一本《基于GPT-3,ChatGPT,GPT-4等Transformer架构的自然语言处理》详解Transformer技术,涵盖文本分析、图像生成及ChatGPT高级提示工程;第二本《大模型应用开发极简入门》以Python为基础,指导开发者快速构建文本生成、问答等应用,并涉及模型微调、LangChain等进阶技术。两书均提供实践案例,适合初学者系统学习大模型开发。(149字)
2025-07-02 20:40:51
914
原创 Dify、n8n、扣子、Fastgpt、Ragflow到底该怎么选?超详细指南来了。
这篇文章会从实用角度出发,通过详细的功能对比、真实的使用体验和具体的应用场景,帮助你在Dify、Coze、n8n、FastGPT和RAGFlow这五款主流平台中找到最适合自己的那一个。无论你是AI开发者、企业用户,还是刚接触AI的新手,这篇对比分析都能为你提供清晰的选择指南。
2025-07-02 20:36:12
730
原创 大模型时代的知识工程:企业级智能知识库构建与增强指南
《大模型时代企业级智能知识库构建指南》提出了一套系统化知识管理框架,从战略规划到技术实现完整覆盖。核心内容包括: 四维知识评估模型:基于业务关键度、调用频率等维度进行知识分级管理 智能知识处理流水线:集成多模态采集、语义标准化和可信度验证技术 混合检索架构:结合关键词、向量搜索和RAG增强实现92%召回率 动态进化机制:通过知识健康度监测和增量微调保持系统持续优化 实施案例显示,该方案可使客户咨询解决率提升至94%,知识维护成本降低62%。配套技术栈包含GPT-4、LangChain等前沿工具,并提供分阶段
2025-07-02 11:37:59
775
原创 大模型+企业本地知识库=王炸!!(附:基于大模型搭建本地知识库的企业培训手册pdf)
企业正积极探索大模型在知识管理中的应用,但缺乏系统指导。最新发布的《基于大模型构建本地知识库的企业培训手册》(65页PDF)提供完整解决方案: 全流程覆盖:从环境配置到部署运维,含代码示例与模板 实战导向:融合一线项目经验,支持快速落地应用 免费获取:配套大模型学习资料,扫码即可领取 该手册助力企业实现知识库本地化部署,提升培训、客户支持等场景效率,推动数字化转型。现开放免费下载,开启AI驱动知识管理新时代。
2025-07-02 11:34:37
457
原创 AI大模型如何落地到特定应用场景?_ai落地应用
AI大模型应用与落地路径 摘要:人工智能技术已广泛应用于智能制造、智慧医疗、金融服务等十大核心场景。从技术落地的角度看,AI大模型需经历需求分析、数据准备、模型开发、训练验证、系统集成、部署运维等关键环节,同时需兼顾合规与安全要求。相比大模型,AI小模型在边缘计算等场景具有效率高、成本低、易部署等优势。大模型与小模型并非对立关系,而存在技术反哺的协同效应:大模型为小模型提供预训练基础,小模型则通过垂直领域实践反哺大模型优化。两者共同推动AI技术在各行业的深度融合与创新发展。(150字)
2025-06-28 18:02:17
956
原创 字节AI大模型应用岗已过,强度拉满了...
大模型技术面试涵盖核心知识体系,一面侧重基础理论(过拟合解决方法、Transformer原理、优化算法对比等),二面深入实践(Self-attention实现、分布式训练设计、推理优化等)。建议准备时:1)精通Transformer架构及变种;2)掌握训练推理全流程;3)深度复盘1-2个项目细节;4)保持LeetCode中等题手感;5)跟踪领域前沿动态。 学习路径分为7阶段:从系统设计到多模态开发,最终实现行业应用落地。配套资源包含640份行业报告、200本电子书及实
2025-06-28 17:56:08
884
原创 Qwen3 Embedding模型架构、训练方法、数据策略
Qwen3 Embedding模型采用多阶段训练方法,基于Qwen3基础模型构建,提供0.6B、4B和8B三种规模。模型架构上,Embedding模型利用[EOS]标记的最后一层隐藏状态生成嵌入,而Reranker模型将相似性评估转化为二分类问题。训练采用改进的对比损失和监督微调损失,通过大规模合成数据驱动的弱监督训练和高品质数据微调两阶段进行,并应用模型合并技术提升泛化能力。实验表明,该模型在MTEB多语言和英文基准测试中表现优异,验证了其有效性。
2025-06-26 23:13:15
1063
原创 【LlamaIndex核心组件指南 | 模型篇】一文通晓 LlamaIndex 模型层:LLM、Embedding 及多模态应用
在人工智能技术快速发展的背景下,大语言模型(LLM)虽然能力强大,但其知识往往局限于训练数据,无法直接访问我们私有的、实时的外部数据源。如何安全、高效地将 LLM 与我们的数据连接起来,构建强大的检索增强生成(RAG)应用,已成为开发者的核心议题。LlamaIndex正是为解决这一问题而生的。
2025-06-26 23:11:46
1031
原创 2025年程序员转行方向推荐_2025年java开发转什么行业好
在AI时代背景下,程序员转型大模型领域迎来新机遇。热门岗位包括:1)AI大模型工程师,负责开发优化NLP/CV等前沿模型;2)数据科学家,利用大模型驱动决策分析;3)算法工程师,实现算法到解决方案的转化;4)AI产品经理,衔接技术与市场需求;5)模型研发工程师,专注深度学习架构创新;6)机器学习工程师,构建维护生产级ML系统。这些岗位契合技术发展趋势,为程序员提供广阔的职业发展空间,尤其在模型优化、业务落地等方向具有显著优势。
2025-06-22 11:26:11
1881
原创 AI Agent:7个国内框架 & Agent应用
摘要:2024年AI Agent技术成为焦点,本文系统介绍了其核心机制、国内主流平台及应用。AI Agent通过感知、规划、行动实现智能决策,具备推理、记忆、工具调用等模块。文章对比了Betteryeah、Coze、百度千帆等6个国内平台的功能特点,涵盖知识库、流程图编排、多模型支持等核心能力。这些平台通过低代码/零代码方式降低开发门槛,在客服、营销、金融等领域展现出广泛应用前景,推动企业数字化转型。
2025-06-22 11:23:27
1409
原创 怎么构建Agent?Agent教程入门到精通,收藏这一篇就够了_agent流程图
有句非洲谚语很有名:一个人可以走得很快,一群人才能走得更远。还有句话是:没有人能在所有领域都成为专家,我觉得这两句话说的是一个道理。团队合作,分工明确,大家齐心协力,各尽其职才能把事情做好。同样的道理,用在 LLM 上也很合适。我们没必要让一个 LLM 去搞定所有复杂的任务。我们可以把不同的 LLM 或者 AI Agent 组合起来,让每个 Agent 都专注于它最擅长的领域。这样,大家各司其职,效率和效果都会更好。这种方式可以构建出一个更加健壮的系统,生产出来的东西质量也更高,结果也更可靠。
2025-06-22 11:21:38
1006
原创 国内权威大模型落地应用案例集[特殊字符]强力推荐—附219页PDF
遴选出97个优秀案例,其中43 个“行业赋能”、46 个“智能应用”、8 个“生态服务”,覆盖新型工业化、能源、医疗、政务等重要应用场景,涵盖天文、农业、化学等科学领域,以及智能数据标注、大模型评测、云边异构融合服务等创新平台。除此之外,本次《案例集》还呈现以下特点:上海成为大模型应用落地热土。《案例集》收到申报案例中,上海占比超过50%。大中型企业是大模型主要试验场。本次案例主要集中在中型、大型企业78 家,占80%,成为大模型应用创新的主要玩家。大模型应用场景实现全面开花。本次案例涉及10
2025-06-19 19:26:36
1355
原创 打造基于Qwen的轻量级个人LLM大语言模型
本文介绍了如何基于Qwen1.5-7B-Chat模型构建个人语言助手。首先指导安装必要的Python依赖包(transformers、bitsandbytes等),并配置GPU加速。详细说明了模型的加载过程,包括尝试4位和8位量化以优化内存使用。文章提供了代码示例展示如何设置系统提示、管理对话历史记录,以及实现响应生成功能。通过tokenizer处理输入,使用温度采样控制输出多样性,最终实现了一个可以持续对话的个人AI助手。该方案平衡了模型性能与资源消耗,适合在个人设备上部署运行。
2025-06-19 19:20:05
878
原创 他说大模型面试全靠玄学,结果我看到他桌上这本书都快被翻烂了!
《百面大模型》:系统攻克大模型面试与知识体系的实战指南 这本由一线专家编写的面试宝典,通过100道高频真题串联大模型核心技术图谱,覆盖预训练、微调、推理优化等13大核心模块。不同于传统题集,它以问答形式深入剖析原理差异(如PPO vs DPO),结合工程实践与源码解析,命中率达95%。书中内容经实战验证,3位实习生系统学习后均获大厂offer。既适合求职者突击面试,也可作为开发者构建知识体系的工具书,兼顾技术深度与面试策略,是应对AI浪潮下大模型岗位竞争的利器。
2025-06-17 11:56:09
922
原创 一文搞懂大模型的部署(Ollama和vLLM)
本文对比介绍了两种主流的大模型部署方案:Ollama和vLLM。Ollama是一款轻量化的本地部署框架,采用Go语言实现,支持跨平台运行,提供命令行接口,适合开发者快速体验模型。vLLM则是面向生产环境的高效推理引擎,基于PyTorch构建,创新的PagedAttention技术显著提升显存利用率和吞吐量。文章详细说明了两者的安装使用方式,并指出Ollama适合轻量级场景,而vLLM更适用于高性能需求的生产部署。最后提供了AI大模型学习资源包获取方式,包含学习路线图、视频教程、技术书籍等全套学习资料。
2025-06-17 11:44:36
886
原创 《2025 大模型平台落地实践研究报告》:AI大模型平台如何成为赋能千行百业的桥梁!(免费下载)
《大模型平台赋能行业智能化转型》摘要 大模型平台正成为AI产业化落地的关键载体,推动千行百业智能化升级。报告指出,百度、阿里等国内大模型在多模态融合、推理能力上取得突破,但企业应用仍面临场景模糊、算力成本高、运营机制缺失等挑战。大模型平台通过"建、用、管"全流程支持,构建模型开发、服务、应用三层核心能力,已在电商、金融、教育等领域实现显著成效:梦饷科技客服效率提升70%,考试宝试题解析成本降低90%。未来,随着多模态技术深化和生态协同,大模型平台将加速医疗、交通等领域的创新应用,开启智能
2025-06-13 15:39:38
1105
原创 大模型Dify案例分享-知识库检索整合Ragflow_dify+ragflow
今天给大家介绍一下关于dify和ragflow知识库整合案例,顺便给大家介绍一下ragflow。 话不多说,下面给大家演示一下效果。 我们首先看一下ragflow测试效果
2025-06-12 23:00:56
658
原创 2025最新AI大模型入门教程(非常详细),从零基础入门到精通,从看这篇开始_ai教程
近年来,人工智能(AI)大模型的迅猛发展吸引了广泛关注,如GPT-3、BERT等。它们的强大能力在自然语言处理、图像识别等领域得到了广泛应用。如果你是AI领域的新手,想要从零基础开始学习并掌握神仙级AI大模型,本文将为你提供一份非常详细的入门教程
2025-06-12 22:58:32
1362
原创 OCR 识别质量如何影响 RAG 系统的性能?有何解决办法?
当我们谈论检索增强生成(RAG)系统的性能瓶颈时,大多数人会关注模型架构、向量数据库优化或检索、生成策略,但是否有人深入思考过一个更基础却被忽视的问题:光学字符识别(OCR)的质量究竟在多大程度上制约着整个 RAG 系统的表现?我们今天为大家带来的这篇文章,作者的观点是 OCR 的识别质量形成了一个隐形的性能天花板,从根本上限制了即使是最先进 RAG 系统的效果。
2025-06-10 13:21:34
829
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人