- 博客(626)
- 收藏
- 关注
原创 构建Agent平台的避坑指南:MCP、Skills、A2A三大方向详解!
文章指出构建Agent平台的常见误区是追求大而全的解决方案。作者提出三个关键方向:MCP统一工具接入标准,Skills将能力模块化而非简单工具堆砌,A2A实现智能体间标准化通信。建议采用务实方法,利用现有标准和协议,专注于构建配置和场景中台,而非自研全套基础设施。通过这三种方式,可以更高效地构建可扩展的智能体系统,避免重复造轮子。
2025-12-13 08:30:00
1000
原创 AI大模型核心原理揭秘:程序员视角下的’黑盒子’拆解,从’通才’到’专才’的智能之旅!
本文通过比喻和图示详解了AI大模型原理:将模型比作"引擎",产品比作"整车";大模型本质是"填空高手",通过函数y=Ax+b和自监督学习处理数据;底层基于Transformer架构,结合注意力机制理解上下文;从"通才"到"专才"需通过微调特定领域数据实现。大模型依靠海量数据"记忆"、百亿参数"计算"和"猜词游戏"实现智能交互,为初学者揭开AI大模型的神秘面纱。
2025-12-13 08:00:00
365
原创 2026年大模型应用开发学习路线:四阶段转型指南,抓住未来3年的职业发展机遇!转AI大模型开发学习顺序真的很重要!
文章指出大模型技术正在重塑IT行业,企业招聘要求大模型能力已成为趋势。为帮助程序员成功转型,文章提出了四阶段学习路径:大模型基础、RAG应用开发工程、大模型Agent应用架构、大模型微调与私有化部署。强调学习顺序的重要性,并提供配套学习资源,帮助读者系统掌握大模型应用开发技能,抓住未来3年的职业发展机遇。
2025-12-12 15:53:08
692
原创 AI Agent开发关键技术详解:从Python基础到平台化开发,抢占AI工程化落地红利!
文章介绍了AI Agent作为AI应用核心的重要性及开发关键技术,包括Function Calling、Agent设计模式、LangChain/LangGraph框架及A2A多智能体协议。针对当前市场供需失衡、人才短缺的机遇,文章提供了从Python基础到平台化开发的系统学习路径,并推荐了《AI Agent开发实战》一书,通过实战项目帮助读者快速掌握模型调用、工具集成及系统构建能力,为抢占AI工程化落地红利奠定基础。
2025-12-12 15:51:53
502
原创 从提示词工程到上下文工程:Google白皮书深度解析AI Agent记忆架构设计!
Google发布《Context Engineering》白皮书,宣告AI开发进入上下文工程时代。Context Engineering通过Session和Memory双脑机制,使大模型从无状态变为有状态。Session管理短期对话上下文,Memory负责长期知识存储,二者共同实现Agent的跨会话理解和个性化。生产环境需注意异步生成、用户隔离和防止记忆投毒。未来AI竞争将取决于Context Engineering的精细程度。
2025-12-12 15:50:22
627
原创 零基础逆袭大模型!全网最细LLM学习路线图,从入门到精通一篇搞定,超详细!
深夜,一位从事传统软件开发的工程师小李,在调试完最后一个API接口后,习惯性地点开了GitHub Trending。排行榜前列,与大模型相关的开源项目几乎占据了半壁江山。他想起白天公司会议上的决定:“接下来所有产品线,都要探索AI赋能的可能性。” 一种强烈的危机感与机遇感同时涌上心头。
2025-12-11 16:26:44
687
原创 LLM代码评审Agent实战:基于Qwen3-Coder与RAG的企业级应用!
文章介绍了基于Qwen3-Coder、RAG和Iflow实现的LLM代码评审Agent实践,通过百炼Embedding构建知识索引,在CI流水线中自动触发AI评审。该方案在C3级安全仓库中成功落地,已累计执行上千次评审,有效发现并发缺陷、资源泄漏等传统CR易忽略的逻辑风险,成功拦截数十次高危缺陷,显著提升评审效率与质量,具备高度通用性。
2025-12-11 16:24:39
527
原创 什么是好代码?从新手到高手的代码质量进化指南!
文章探讨了"什么是好代码"的多维度评价标准,从初入职场的"完成任务"到深入思考代码质量,提出好代码应从稳定、体验、效率和成本四个维度评价。介绍了如何通过全局理解、避免"坏味道"、掌握设计原则和模式来编写好代码,强调写好代码是一门艺术,需要在层次和易理解性之间找到平衡,最终形成团队共识的代码评价标准。
2025-12-11 16:23:06
674
原创 【万字长文】AI原生时代的技术风险解决方案:多智能体协作模式、上下文工程与强化学习三大核心技术!
本文系统阐述了AI原生时代下面向技术风险领域的智能体系统(DeRisk)的架构设计、核心理念与关键技术演进路径。文章提出智能体系统三阶段发展模型(基础智能、中级智能、高阶智能),详细介绍了多智能体协作模式、上下文工程与强化学习三大核心技术,并通过DeepRCA和SQL诊断分析两个实践案例展示了DeRisk系统的落地应用,为技术风险领域的AI原生应用提供了完整的技术框架与实践指导。
2025-12-11 16:20:53
648
原创 打破信息差!转AI大模型开发学习顺序真的很重要!!
2025年AI大模型应用开发人才需求激增,头部企业80%岗位与AI相关。面对职业转型压力,建议分4阶段系统学习:1)掌握大模型基础与Prompt设计;2)精通RAG应用开发与优化;3)构建Agent应用架构(LangChain/LlamaIndex);4)实现模型微调与私有化部署。学习需遵循技术演进路径,配套实战项目提升竞争力。完整学习路线与资源可免费获取,助力开发者抓住AI浪潮机遇。(149字)
2025-12-11 15:38:47
351
原创 【AI大模型面试必考】LangChain框架实战教程:大模型应用开发面试全攻略!
文章系统介绍了LangChain框架的核心概念、LCEL优势、Agent的ReAct执行流程、RAG实现方法、与LlamaIndex的对比、文档分块策略及RAG评估提升等。通过问答形式详解了Models、Prompts、Indexes、Memory、Chains、Agents六大组件,为开发者提供了大模型应用开发的全面知识体系,是面试准备的实用指南。
2025-12-10 16:51:36
1114
原创 2026大模型学习终极路线图:从零基础到精通LLM安全,手把手带你通关!
2025年,大模型已从技术热点演变为重塑千行百业的核心生产力。智联招聘数据显示,AI大模型相关岗位需求同比增长超过10倍,但人才供需比仅为0.5。市场上每两个岗位,才有一个合适的候选人。这张路线图不仅是一份学习指南,更是你抓住时代机遇、构建职业护城河的战略地图。
2025-12-10 16:48:08
724
原创 AI智能体完全指南:3种工作流+4种智能体模式助你构建稳健高效系统(建议收藏)
本文系统介绍了AI智能体的概念和设计模式,详细区分了工作流模式(提示链、路由、并行化)和智能体模式(反思、工具使用、规划、多智能体)。文章强调智能体方案并非万能,需权衡成本与收益,并根据任务特性选择合适模式。工作流适用于步骤明确的任务,而智能体则更灵活适应复杂场景。实际应用中,这些模式可灵活组合,通过实证评估不断优化,切忌过度设计。
2025-12-10 16:45:34
750
原创 万字长文!自进化智能体全解析:顶级团队揭秘LLMs如何实现动态进化与超级智能!
本文是普林斯顿大学、清华大学等机构对自进化智能体的系统性综述,围绕"进化什么、何时进化、如何进化"三大核心问题展开。文章详细分析了智能体的模型、记忆、工具等组件的进化机制,测试时内/外的时机选择,以及基于奖励、反馈等进化实现方法,并探讨评估方法、应用场景及未来研究方向,为构建更具适应性、鲁棒性的智能体系统提供了结构化框架,是通往人工超级智能的重要一步。
2025-12-10 16:44:01
816
原创 AgentScope Java 1.0:企业级自进化Agent开发框架,Java开发者入门大模型应用首选!
AgentScope Java 1.0是阿里巴巴推出的企业级自进化Agent开发框架,基于ReAct架构,提供从开发到部署的全生命周期解决方案。框架具备安全沙箱、上下文管理、无缝集成和高性能优化等企业级特性,支持"开发-部署-评估-训练"的自进化闭环。Java开发者可通过该框架快速构建稳定、智能的Agent应用,无需深入AI技术即可实现Agent自进化,填补了Java生态在企业级Agent开发领域的空白。
2025-12-10 16:26:37
1030
原创 想转AI大模型却无从下手?这篇保姆级前景指南与学习路线,让你少走弯路,快速上车!
2025 年刚开年,DeepSeek就像一颗重磅炸弹,在IT人的职业领域炸出了新的格局。阿里云核心业务全面接入 Agent 体系,字节跳动 30% 的后端岗位要求具备大模型开发能力,腾讯、京东、百度等大厂也纷纷敞开怀抱,招聘岗位 80% 都和 AI 相关。大模型就像一个神奇的魔法棒,正在重新绘制技术开发的蓝图,传统的 CRUD 开发模式渐渐被 AI 原生应用挤到了角落。
2025-12-09 16:38:49
1113
原创 大模型平台落地指南:从战略规划到实践操作的收藏级学习路线,小白与程序员必备!
本文系统阐述了大模型平台落地的六大原则(战略引领、因地制宜、标准化、开放协同、安全性、持续改进)和四个关键步骤(评估诊断、方案制定、部署实施、持续优化),并详细介绍了三层落地框架(模型开发层、模型服务层、应用开发层),为企业提供从技术到业务的全维度实施路径,助力企业智能化转型。
2025-12-09 16:28:26
979
原创 分钟级搭建大模型应用开发环境:降低硬件成本,选择RAG入门,一文掌握大模型应用开发!
AI技术正重塑全球就业市场,开发者面临硬件门槛、启动策略复杂和知识陷阱三重挑战。破局之道在于:使用CPU云实例降低硬件成本,选择RAG作为入门方向,接受系统化开发指导。火山引擎g4il实例和英特尔OPEA社区为开发者提供了一键部署RAG的能力,帮助快速掌握AI应用开发核心技能,适应从代码生产者到知识整合者的角色转变。
2025-12-09 16:25:52
977
原创 【干货】强化学习在大型语言模型中的应用:能力边界与挑战,未来改进方向!
本文通过pass@k曲线等实验数据分析,揭示当前强化学习(RL)在大型语言模型中的应用主要提高了单次尝试成功率,并未真正扩展模型推理能力边界。研究表明,RL模型在多次尝试机会下反而不如基座模型,其能力边界实际上被预训练先验所限制。文章探讨了RL在LLM中受限的原因,并提出未来改进方向,为理解RL在大模型中的实际价值提供了重要参考。
2025-12-09 16:23:50
592
原创 PEFT框架实战:只需0.1%参数,实现大模型高效微调!
PEFT是Hugging Face推出的参数高效微调框架,通过只训练模型的一小部分参数(如LoRA adapter),避免对整个大模型进行全量更新。它显著降低显存和计算需求,减少存储开销,同时性能接近全量微调。PEFT与Hugging Face生态深度集成,支持多种微调方法,适用于NLP、CV、扩散模型等多种场景。只需几行代码即可实现,训练的adapter文件仅几MB,便于存储和快速切换,是资源有限环境下大模型微调的理想解决方案。
2025-12-09 16:08:25
634
原创 从普通程序员到AI应用工程师:能力瓶颈的真相,与一条被验证的务实转型路径!
面对AI工具对编程行业的冲击,程序员可转型为AI应用工程师,尤其是LLM Agent方向。这一岗位需求年增长率达62.8%,薪资较传统岗位高20-30%。2025年AI代理市场规模预计达31亿美元,企业急需相关人才。建议从学习LLM基础概念和实践项目入手,成为AI的"操控者"而非"受害者",把握AI时代的职业新机遇。
2025-12-08 17:38:31
1463
原创 裁员警报!AI时代程序员生存法则:从“码农”到“智能体架构师”的破局路径!
领英高管警告,AI正以前所未有的速度取代那些帮助“Z世代”开启职业生涯的初级岗位。全球人力资源机构任仕达的报告也佐证了这一点:自2024年1月以来,全球初级职位招聘量已下滑 29个百分点。在科技行业,初级软件工程师赖以积累经验的基础编码与调试任务,已成为AI的擅长领域。程序员群体,正从自动化浪潮的推动者,部分转变为被冲击的对象。
2025-12-08 17:34:51
1002
原创 麦肯锡2025报告:AI时代人类与智能体的技能伙伴关系重塑工作格局!
麦肯锡报告指出,AI将形成人类、智能体与机器人的"技能伙伴关系"而非替代人类。技术潜力不等于大规模失业,人类将转向更高价值任务。未来工作可分为七种协作原型,人类技能将演变而非消失,AI素养将成为基础能力。最大收益来自重新设计整个工作流程,企业和社会需投资于人,确保技术进步红利被广泛共享。
2025-12-08 17:32:25
1207
原创 【大模型面试必备】多轮对话怎么处理?为什么多轮对话是 Function Call 里最难的?
文章详解了大模型Function Call中的多轮对话技术,包括三种结构类型(信息补全型、工具链式和混合型)、追问与工具调用判断条件、数据生成方法、防止模型"乱跳"技巧及真实对话格式。多轮对话被视为Function Call微调的难点和天花板,需要模型理解流程调度逻辑而非简单语言理解。
2025-12-08 17:30:52
625
原创 大模型应用开发:基于AgentScope框架的AI Agent实战案例(值得收藏)
本文详细介绍了基于AgentScope框架的AI Agent开发实践,以高考查询小助手为例,展示了如何利用ReAct范式实现智能体的工具调用、上下文记忆和推理能力。文章通过代码实现和测试用例验证,对比了AgentScope与其他开发框架的优势,为开发者提供了从理论到实践的完整AI Agent开发指南。
2025-12-08 17:27:45
612
原创 AI大模型揭秘:什么是温度系数(Temperature)?深度解析影响模型输出的关键因素!
温度系数是控制大模型生成文本随机性和多样性的关键参数。低温(0.1-0.3)适合事实性问答,确定性高;中温(0.5-0.7)适合日常对话;高温(>1.0)适合创意生成和头脑风暴。温度过低会导致机械性重复,过高则可能产生事实错误和逻辑混乱。掌握温度系数的调节技巧,能有效控制AI输出的质量和风格,是使用大模型的重要技能。
2025-12-07 09:00:00
548
原创 大模型Function Call数据构建实战:工业级“沙盒“方法全解析!
本文详解了大模型Function Call数据的"沙盒"构建方法,通过定义标签体系和业务变量,系统化生成全场景数据。相比手写数据,沙盒方法能保证覆盖率、格式规范性和流程完整性,让模型学会意图判断、信息追问、工具调用顺序等能力。文章提供了完整的数据生成代码,帮助开发者构建工业级Function Call数据集,显著提升模型性能。
2025-12-07 08:45:00
952
原创 一文说透:大模型应用工程师的核心技能、薪资前景与入门路线(2026版)
随着人工智能技术的飞速发展,大模型已成为当今科技领域的核心驱动力。在这一浪潮下,大模型应用工程师这一新兴职业崭露头角,备受瞩目。那么,究竟什么是大模型应用工程师?他们的就业前景如何?薪资待遇怎样?又该如何规划自己的职业发展道路?接下来,让我们一同深入探讨。
2025-12-06 15:44:42
978
原创 从零开始学知识图谱:解决大模型幻觉问题的必备技能【建议收藏】
本文介绍了知识图谱的概念及其在解决大模型幻觉问题中的应用。知识图谱通过存储实体间的关系,可有效减少大模型编造事实的问题。与传统RAG相比,知识图谱在处理涉及实体间关系的复杂问题时更具优势,可与向量数据库互补使用。文章还提出多路召回策略,结合关系型数据库、向量数据库和知识图谱,提升大模型回答的准确性。最后提供了大模型从基础到进阶的完整学习路线,帮助读者系统掌握相关知识。
2025-12-06 15:34:51
570
原创 大模型应用开发为何离不开LangChain?从“能说“到“能干“的必学框架!
LangChain是大模型应用开发的"操作系统",将模型从"聊天黑箱"转变为可协作、可调用的智能系统。它支持主流模型和向量数据库,提供模块化链式逻辑(LCEL),实现Agent自主决策工具调用,并通过LangSmith平台实现可视化监控。适用于RAG检索增强、智能体开发、结构化输出等场景,让AI从"能说"变为"能干",推动大模型开发进入工程化时代。
2025-12-06 15:31:32
634
原创 中国式35岁困境:上班已老,退休尚早,如何破局?
本文通过真实案例揭示了中国职场人士面临的35岁危机,展示了互联网大厂员工、国企工作者及女性职场人在职业发展、家庭生活和社会压力中的困境。文章指出,中国35岁危机明显早于全球中年危机,是对过去高薪高压力工作的"代偿"。所有命运的馈赠都在暗中标好了价格,如何在快速变化的时代找到自己的定位,成为每个职场人必须思考的问题。
2025-12-05 11:48:10
1314
原创 AI大模型万亿赛道风起云涌,小白/程序员如何抢占百万就业岗?别错过这个风口!
IDC 发布的数据显示,2025 年全球 AI 市场规模将突破 3 万亿美元,相较于五年前,规模直接翻了 4 倍;国内 AI 核心产业规模也成功突破 4000 亿元,年均增速稳定保持在 25% 以上。一边是技术的突飞猛进,不断刷新人们对 AI 的认知;一边是市场的持续爆发,需求日益增长。显而易见,AI 行业正迎来前所未有的黄金发展期。
2025-12-05 11:43:01
949
原创 NLP是什么?NLP入门到精通:从基础知识到BERT模型,揭秘自然语言处理的革命性变革!
本文系统介绍了自然语言处理(NLP)的基础知识,包括其定义、任务及细分领域,分析了NLP任务面临的挑战。文章回顾了2019年前NLP的主要技术(RNN和CNN),重点阐述了BERT模型如何通过Transformer架构彻底改变NLP范式,实现领域"大一统"。最后提供了从大模型系统设计到行业应用开发的完整学习路线,为程序员提供系统化学习路径。
2025-12-05 11:42:37
730
原创 从GPT3到ChatGPT:大模型微调技术深度解析,探索AI进化的关键路径!
文章详细介绍了大模型微调(fine-tuning)技术,从GPT3到ChatGPT的发展过程中微调扮演的关键角色。解释了微调的概念、必要性及解决的问题,包括强化特定任务能力、提高性能、避免数据泄漏和降低成本。特别介绍了LORA等参数高效微调技术,强调10B以下模型微调门槛不高,非专业人员也可尝试。通过微调,可使模型适应特定应用场景,如API编排、模拟特定说话风格、支持特定语言等。
2025-12-05 11:40:54
954
原创 智能体(Agent)深度解析:AI浪潮下的核心概念,探索智能体与世界的交互奥秘!
欢迎来到智能体的世界!在人工智能浪潮席卷全球的今天,**智能体(Agent)**已成为驱动技术变革与应用创新的核心概念之一。无论你的志向是成为AI领域的研究者、工程师,还是希望深刻理解技术前沿的观察者,掌握智能体的本质,都将是你知识体系中不可或缺的一环。
2025-12-05 11:39:11
915
原创 大模型应用工程师抢位战:3-6个月零基础转型,你的薪资翻倍路线图已画好!
技术浪潮的更迭从未如此迅猛。一项数据显示,大模型应用开发岗位的需求在2025年持续保持同比超过10倍的增长,成为程序员群体中“薪资翻倍”现象最集中的领域。然而,面对海量的概念、复杂的工具链和快速迭代的技术栈,许多开发者陷入了“想转型,却不知从何下手”的困境。
2025-12-04 14:08:31
1400
原创 2025工业革命!智能体十大前沿应用,引领制造业智能化转型新潮流!
工业智能体是融合信息技术、自动化技术与人工智能的创新型工业智能化系统,正成为推动制造业从自动化向智能化深度跃迁的核心引擎。它依托大语言模型、知识图谱、强化学习等关键技术,构建起“感知—认知—决策—执行”的完整闭环体系,实现柔性生产调度与数据驱动决策,更是国家推进制造业数字化转型和“人工智能+”行动计划的核心抓手,为产业高质量发展注入强劲动力。
2025-12-04 14:06:33
593
原创 智能体(AI Agent)完全指南:从零开始了解AI的下一个风口,小白也能轻松入门!
文章详细介绍了智能体的概念、组成和应用。智能体是能自主决策、行动的"虚拟人"或系统,由大脑(大语言模型)、感知、行动、记忆和工具五部分组成。通过旅行规划智能体的例子,展示了智能体如何像私人助理一样理解模糊指令并自主完成任务。智能体已进入生活各方面,未来将发展为每个人的超级智能助理,同时也面临数据安全等挑战。
2025-12-04 14:04:30
921
原创 告别无效Prompt:构建稳定Agent工作流的6个核心框架与精炼技巧!
本文系统介绍了四种LLM智能体工作流的Prompt设计方法:ReAct(思考-行动-观察循环)、CoT思维链(分步推理)、思维树(多分支扩展)和反思Prompt(自我优化)。文章强调有效的Prompt需包含任务方法、输入输出示例(3-5个)、历史记录和具体问题,并建议使用激励性措辞提升模型表现。此外还探讨了工具调用分组策略和多智能体分工设计。最后指出大模型时代带来的职业机遇,并附赠包含640份行业报告、视频教程等资源的大模型学习资料包,提供从系统设计到行业应用的全阶段学习路线。通过精心设计的Prompt可显
2025-12-04 14:02:52
727
原创 大模型微调技术全景图:LoRA、QLoRA、Adapter等8种PEFT方法深度解析!
本文系统介绍大模型参数高效微调(PEFT)方法,包括LoRA、QLoRA、适配器调整、前缀调整、提示调整、P-Tuning等8种技术。这些方法通过冻结预训练模型主干参数,仅引入少量可训练适配模块,显著降低微调计算和存储需求,使资源有限环境下也能高效定制大模型,并提供了从零基础到进阶的完整学习路线。
2025-12-04 14:00:58
978
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅