相反数,本来想维护相反数的,发现好像直接变相反数就好了
取反后,最大值变成最小值,最小值变成最大值
维护如果写3个query ,就比较麻烦
可以写结构体函数,一个query解决问题
挺好写的
一开始wa,看到标记没下传,后面wa,调了3个点,发现是边权赋值错误
中午12->下午3,因此,中午该吃饭,吃饭,写什么破题,后面码都没仔细看了
code
// Problem: P1505 [国家集训队] 旅游
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P1505
// Memory Limit: 256 MB
// Time Limit: 1000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include<iostream>
#include<vector>
using namespace std;
const int N=2e5+9;
int n;
int a[N];
struct edge{
int u,v,w;
}ee[N];
//树剖
//1.转成线性部分
vector<edge> e[N];
void add(int u,int v,int w){
e[u].push_back({v,u,w});
e[v].push_back({u,v,w});
}
int fa[N],dep[N],sz[N],wc[N],dis[N];
void dfs1(int u,int f){//fa dep sz wc
fa[u]=f;
sz[u]=1;
dep[u]=dep[f]+1;
for(auto & [x,y,z] : e[u]){
if(x==f){
dis[u]=z;//边权给儿子
}
if(x!=f){
dfs1(x,u);
sz[u]+=sz[x];
if(sz[x]>sz[wc[u]]){
wc[u]=x;
}
}
}
}
int dfn[N],rdfn[N],top[N],vistime;
void dfs2(int u,int Top){//dfn rdfn top
dfn[u]=++vistime;
a[vistime]=dis[u];//
top[u]=Top;
if(wc[u]){
dfs2(wc[u],Top);
for(auto & [x,y,z] : e[u]){
if(x!=wc[u] && x!=fa[u]){
dfs2(x,x);
}
}
}
}
//2.线段树维护
struct SEG{
#define INF (1ll<<62)
#define ll long long
#define tl(id) (id<<1)
#define tr(id) (id<<1|1)
#define li inline
struct node{
int l,r;
ll val,mx,mn;
int rev;
}seg[N<<2];
li void pushup(node &id,node &l,node &r){
id.val=l.val+r.val;
id.mx=max(l.mx,r.mx);
id.mn=min(l.mn,r.mn);
}
li void pushup(int id){
pushup(seg[id],seg[tl(id)],seg[tr(id)]);
}
li int inrange(int L,int R,int l,int r){return l<=L && R<=r;}
li int outofrange(int L,int R,int l,int r){return L>r || R<l;}
li void build(const int id,int l,int r){
seg[id].l=l,seg[id].r=r;
if(l==r){
seg[id]={l,r,a[l],a[l],a[l],0};
return;
}
int mid=(l+r)>>1;
build(tl(id),l,mid);
build(tr(id),mid+1,r);
pushup(id);
}
li void maketag(int id){
seg[id].rev^=1;
seg[id].val*=-1;
seg[id].mx*=-1;
seg[id].mn*=-1;
swap(seg[id].mx,seg[id].mn);
}
li void pushdown(int id){
if(!seg[id].rev){return;}
maketag(tl(id));
maketag(tr(id));
seg[id].rev=0;
}
li node query(int id,int l,int r){
if(seg[id].l>=l && seg[id].r<=r){
return seg[id];
}else{
int mid=(seg[id].l+seg[id].r)>>1;
pushdown(id);
if(mid>=r){
return query(tl(id),l,r);
}else if(mid<l){
return query(tr(id),l,r);
}else{
node res;
node left=query(tl(id),l,r);
node right=query(tr(id),l,r);
pushup(res,left,right);
return res;
}
}
}
li void modify(int id,int L,int R,int l,int r){
if(inrange(L,R,l,r)){
maketag(id);
}else if(!outofrange(L,R,l,r)){
int mid=(L+R)>>1;
pushdown(id);
modify(tl(id),L,mid,l,r);
modify(tr(id),mid+1,R,l,r);
pushup(id);
}
}
li void update(int id,int l,int r,int pos,int v){
if(l==r){
seg[id]={l,r,v,v,v,0};
return;
}
int mid=(l+r)>>1;
pushdown(id);
if(mid>=pos){
update(tl(id),l,mid,pos,v);
}else{
update(tr(id),mid+1,r,pos,v);
}
pushup(id);
}
}t;
#define node SEG::node
node merge(node l,node r){
node id={0,0,0,-INF,INF,0};
id.val=l.val+r.val;
id.mx=max(l.mx,r.mx);
id.mn=min(l.mn,r.mn);
return id;
}
//3.找LCA,同时完成操作
void update(int u,int v){
while(top[u]!=top[v]){
if(dep[top[u]]<dep[top[v]]){//
swap(u,v);
}
t.modify(1,1,n,dfn[top[u]],dfn[u]);//深度越小,dfs序号越小
u=fa[top[u]];//处理完上移动
}
if(dfn[u]>dfn[v]){
swap(u,v);
}
if(dfn[u]+1<=dfn[v]){
t.modify(1,1,n,dfn[u]+1,dfn[v]);
}
}
node ask(int u,int v){
node res={0,0,0,-INF,INF,0};
while(top[u]!=top[v]){
if(dep[top[u]]<dep[top[v]]){
swap(u,v);
}
res=merge(res,t.query(1,dfn[top[u]],dfn[u]));
u=fa[top[u]];
}
if(dfn[u]>dfn[v]){
swap(u,v);
}
if(dfn[u]+1<=dfn[v]){
res=merge(res,t.query(1,dfn[u]+1,dfn[v]));//去除公共祖先
}
return res;
}
int main(){
cin>>n;
for(int i=1;i<=n-1;i++){
int u,v,w;
cin>>u>>v>>w;
u++,v++;
ee[i]={u,v,w};
add(u,v,w);
}
dfs1(1,0);
dfs2(1,1);
t.build(1,1,n);
int m;
cin>>m;
for(int i=1;i<=m;i++){
string op;
cin>>op;
if(op=="C"){//
int x,w;
cin>>x>>w;
int u=ee[x].u;
int v=ee[x].v;
if(dep[u]<dep[v]){
swap(u,v);
}
t.update(1,1,n,dfn[u],w);
}else if(op=="N"){
int u,v;
cin>>u>>v;
u++,v++;
update(u,v);
}else if(op=="SUM"){
int u,v;
cin>>u>>v;
u++,v++;
cout<<ask(u,v).val<<'\n';
}else if(op=="MAX"){
int u,v;
cin>>u>>v;
u++,v++;
cout<<ask(u,v).mx<<'\n';
}else if(op=="MIN"){
int u,v;
cin>>u>>v;
u++,v++;
cout<<ask(u,v).mn<<'\n';
}
}
}