LightOJ 1031 Easy Game--区间dp

原题链接:http://vjudge.net/problem/LightOJ-1031


题意:n个数,两个人A和B每次从头部或尾部取出若干个数,直到取完,最后 ’A取出数和‘ 减去 ‘B取出数和’ ,使其最大,求这个最大值。


分析:dp[ i ][ j ]表示区间i,j内A-B的最大值。那么对于k(i<=k<j),分为[ i , k ]和[ k+1 , j ]两部分,如果A取[ i , k ],那么剩下的[ k+1 , j ]就是B先取,则dp[ k+1 ][ j ]表示B-A,那么整个dp[ i ][ j ]就是等于sum[k] - sum[i - 1] - dp[k + 1][j] = A-(A-B)。


#define _CRT_SECURE_NO_DEPRECATE 

#include<iostream>
#include<vector>
#include<cstring>
#include<queue>
#include<stack>
#include<algorithm>
#include<cmath>
#include<string>
#include<stdio.h>
#define INF 99999999
#define eps 0.0001
using namespace std;

int t;
int n;
int v[105];
int sum[105];
int dp[105][105];

int main() 
{
	scanf("%d", &t);
	for (int cas = 1; cas <= t; cas++)
	{
		scanf("%d", &n);
		for (int i = 1; i <= n; i++)
		{
			scanf("%d", &v[i]);
			sum[i] = sum[i - 1] + v[i];
			dp[i][i] = v[i];
		}

		for (int l = 1; l <= n; l++)
		{
			for (int i = 1; i + l <= n; i++)
			{
				int j = i + l;
				dp[i][j] = sum[j] - sum[i - 1];
				for (int k = i; k < j; k++)
				{
					dp[i][j] = max(dp[i][j], sum[k] - sum[i - 1] - dp[k + 1][j]);
					dp[i][j] = max(dp[i][j], sum[j] - sum[k] - dp[i][k]);
				}
			}
		}
		printf("Case %d: %d\n", cas, dp[1][n]);
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值