poj2411 Mondriaan's Dream--状压dp

原题链接:http://poj.org/problem?id=2411

.

题意:一个n*m的方格,给定一个1*2的方块,要求用这个方块填充方格,填满,一共多少种填充方法。


分析:对于一行的某一列来说,该列有三种:横着,竖着,不填。首先dfs求出一行可以有多少种可能。再枚举每种可能,直接看代码,不难的。


#define _CRT_SECURE_NO_DEPRECATE

#include<iostream>
#include<vector>
#include<cstring>
#include<queue>
#include<stack>
#include<algorithm>
#include<cmath>
#include<string>
#include<stdio.h>
#define INF 99999999
#define eps 0.0001
using namespace std;
 
int w, h;
int num;
long long dp[12][1 << 11];
int path[11 * (1 << 11)][2];

void dfs(int l, int now, int pre)
{
	if (l > w)
		return;
	if (l == w)
	{
		path[num][0] = pre;
		path[num++][1] = now;
		return;
	}

	dfs(l + 2, (now << 2) | 3, (pre << 2) | 3);//横着放
	dfs(l + 1, (now << 1) | 1, pre << 1);//竖着放
	dfs(l + 1, now << 1, (pre << 1) | 1);//不放
}

int main()
{
	while (~scanf("%d%d", &w, &h) && (w || h))
	{
		if (w*h % 2 == 1)
			printf("0\n");
		else
		{
			if (w > h)
				swap(w, h);
			num = 0;
			dfs(0, 0, 0);//记住第一个参数是0,不是1,因为对于最后一列,如果是1,等到了w列,正好退出,只有0才会把w列考虑进去
			memset(dp, 0, sizeof(dp));
			dp[0][(1 << w) - 1] = 1;
			for (int i = 0; i < h; i++)
				for (int j = 0; j < num; j++)
					dp[i + 1][path[j][1]] += dp[i][path[j][0]];
			printf("%lld\n", dp[h][(1 << w) - 1]);
			
		}
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值