用Python+Matplotlib绘制极坐标下的伪彩图(pcolor)

本文介绍了如何使用Python和Matplotlib库在极坐标系中绘制伪彩图。作者在研究过程中遇到挑战,通过插值处理数据并选择pcolor方法实现图像绘制。文章详细讲解了数据导入、插值处理和绘图过程,包括在插值过程中遇到的问题及解决方案。
摘要由CSDN通过智能技术生成

用Python+Matplotlib绘制极坐标下的伪彩图(pcolor)

前言

说在前面,写这个呢仅仅是为了记录下自己在学习过程中的一些问题以及排坑,代码也有很多待优化的地方,大佬们轻喷。

码字不易,转载务必注明出处!

先说下为什么要画这个图吧,本人石油工程研狗,帮老板板砖的时候总免不了画画图,有一天老板甩给我一篇论文,指了指文中一图。
在这里插入图片描述
于是我便开始在网络搜寻画法,百度关键词Python极坐标云图polarpcolor 均未果,仅找到了些许Matlab的代码,无奈实在没找到用python画图的代码,于是开始了自己的摸索。

思路

首先这个是要先建立一个极坐标,然后导入数据插值(此处我有遇坑),最后在极坐标的基础上绘制这种伪色彩图的效果,找到了两种绘图方法pcolorcontourf两种方法,两种方法的区别我百度了一下,知乎-pcolor 和 contourf这两个函数有什么不同?,各位可以参考,也欢迎各位在评论区讨论区别。最终我选择了pcolor。只因为pcolor画出来的图更像吧。

绘图过程

导入数据

数据是老师给的本专业领域的数据,同行看一眼应该就知道是什么了,非同行也不太用了解,就当是个学习资料了。

pos 0 30 60 90
0 1.101447148 1.308827831 1.526038083 1.603848713
30 1.101447148 1.279591136 1.49432297 1.577829862
60 1.101447148 1.204513965 1.435064241 1.52576792
90 1.101447148 1.108569817 1.404547306 1.499676995
120 1.101447148 1.204513965 1.435064241 1.52576792
150 1.101447148 1.279591136 1.49432297 1.577829862
180 1.101447148 1.308827831 1.526038083 1.603848713
210 1.101447148 1.279591136 1.49432297 1.577829862
240 1.101447148 1.204513965 1.435064241 1.52576792
270 1.101447148 1.108569817 1.404547306 1.499676995
300 1.101447148 1.204513965 1.435064241 1.52576792h
330 1.101447148 1.279591136 1.49432297 1.577829862
360 1.101447148 1.308827831 1.526038083 1.603848713
// 导入数据
import numpy as np
import pandas as pd

df = pd.read_csv('data.csv')

# 注意!此处记得转化为弧度!
pos = np.array(df['pos']/180*np.pi)
ind = np.array(df.columns[1:], dtype=np.int)
values = np.array(df[ind.astype('str')])

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值