扩展中国剩余定理

扩展中国剩余定理

给定 2n 个整数 a1,a2,…,an 和 m1,m2,…,mn,求一个最小的非负整数 x,满足 ∀i∈[1,n],x≡mi(mod ai)。

输入格式
第 1 行包含整数 n。

第 2…n+1 行:每 i+1 行包含两个整数 ai 和 mi,数之间用空格隔开。

输出格式
输出最小非负整数 x,如果 x 不存在,则输出 −1。
如果存在 x,则数据保证 x 一定在 64 位整数范围内。

数据范围
1≤ai≤231−1,
0≤mi<ai
1≤n≤25
输入样例:
2
8 7
11 9
输出样例:
31

思路

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll exgcd(ll a,ll b,ll &x,ll &y)//扩展欧几里得
{
    if(!b)
    {
        x=1,y=0;
        return a;
    }
    ll d=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}

int main()
{
    int n;
    cin>>n;
    bool has_answer=true;
    ll a1,m1;
    cin>>a1>>m1;

    for(int i=0;i<n-1;i++)
    {
        ll a2,m2;
        cin>>a2>>m2;

        ll k1,k2;//a1K1+a2K2=m2-m1
        ll d=exgcd(a1,a2,k1,k2);//这里不仅可以求出a1,a2的最大公约数,还可以求出副产品k1,k2,为下文38行作铺垫
        if((m2-m1)%d)//不能整除,无解
        {
            has_answer=false;
            break;
        }

        k1*=(m2-m1)/d;//由a1k1+a2k2=d,两边同时乘以(m2-m1)/d得到a1k1+a2k2=m2-m1的k1的解,由扩展欧几里德求得的最初的k1,后再乘得到后者式的解
        ll t=a2/d;//用来取模的,保证求得的k1为最小非负整数

        k1=(k1%t+t)%t;//k1,k2解集//求得了k1,在把k1代回原来的式子x=a1*k1+m1,即可求出x

        m1=a1*k1+m1;//此时的m1在被赋值之后的值为当前"X"的值,此时赋值是为了方便下一轮的继续使用
         a1=abs(a1/d*a2);//循环结束时,a1的值为当前所有的a1,a2,……an中最小的公倍数,(a1*a2)/d
    }
   if(has_answer)
   {
       cout<<(m1%a1+a1)%a1<<endl;//输出x,被所有余数的最小公倍数取模后的x
   }
   else puts("-1");

   return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值