扩展中国剩余定理
给定 2n 个整数 a1,a2,…,an 和 m1,m2,…,mn,求一个最小的非负整数 x,满足 ∀i∈[1,n],x≡mi(mod ai)。
输入格式
第 1 行包含整数 n。
第 2…n+1 行:每 i+1 行包含两个整数 ai 和 mi,数之间用空格隔开。
输出格式
输出最小非负整数 x,如果 x 不存在,则输出 −1。
如果存在 x,则数据保证 x 一定在 64 位整数范围内。
数据范围
1≤ai≤231−1,
0≤mi<ai
1≤n≤25
输入样例:
2
8 7
11 9
输出样例:
31
思路
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll exgcd(ll a,ll b,ll &x,ll &y)//扩展欧几里得
{
if(!b)
{
x=1,y=0;
return a;
}
ll d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main()
{
int n;
cin>>n;
bool has_answer=true;
ll a1,m1;
cin>>a1>>m1;
for(int i=0;i<n-1;i++)
{
ll a2,m2;
cin>>a2>>m2;
ll k1,k2;//a1K1+a2K2=m2-m1
ll d=exgcd(a1,a2,k1,k2);//这里不仅可以求出a1,a2的最大公约数,还可以求出副产品k1,k2,为下文38行作铺垫
if((m2-m1)%d)//不能整除,无解
{
has_answer=false;
break;
}
k1*=(m2-m1)/d;//由a1k1+a2k2=d,两边同时乘以(m2-m1)/d得到a1k1+a2k2=m2-m1的k1的解,由扩展欧几里德求得的最初的k1,后再乘得到后者式的解
ll t=a2/d;//用来取模的,保证求得的k1为最小非负整数
k1=(k1%t+t)%t;//k1,k2解集//求得了k1,在把k1代回原来的式子x=a1*k1+m1,即可求出x
m1=a1*k1+m1;//此时的m1在被赋值之后的值为当前"X"的值,此时赋值是为了方便下一轮的继续使用
a1=abs(a1/d*a2);//循环结束时,a1的值为当前所有的a1,a2,……an中最小的公倍数,(a1*a2)/d
}
if(has_answer)
{
cout<<(m1%a1+a1)%a1<<endl;//输出x,被所有余数的最小公倍数取模后的x
}
else puts("-1");
return 0;
}